Efficient Similarity Search across Top-k Lists under the Kendall's Tau Distance

K. Pal, S. Michel
{"title":"Efficient Similarity Search across Top-k Lists under the Kendall's Tau Distance","authors":"K. Pal, S. Michel","doi":"10.1145/2949689.2949709","DOIUrl":null,"url":null,"abstract":"We consider the problem of similarity search in a set of top-k lists under the generalized Kendall's Tau distance. This distance describes how related two rankings are in terms of discordantly ordered items. We consider pair- and triplets-based indices to counter the shortcomings of naive inverted indices and derive efficient query schemes by relating the proposed index structures to the concept of locality sensitive hashing (LSH). Specifically, we devise four different LSH schemes for Kendall's Tau using two generic hash families over individual elements or pairs of them. We show that each of these functions has the desired property of being locality sensitive. Further, we discuss the selection of hash functions for the proposed LSH schemes for a given query ranking, called query-driven LSH and derive bounds for the required number of hash functions to use in order to achieve a predefined recall goal. Experimental results, using two real-world datasets, show that the devised methods outperform the SimJoin method---the state of the art method to query for similar sets---and are far superior to a plain inverted-index--based approach.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of similarity search in a set of top-k lists under the generalized Kendall's Tau distance. This distance describes how related two rankings are in terms of discordantly ordered items. We consider pair- and triplets-based indices to counter the shortcomings of naive inverted indices and derive efficient query schemes by relating the proposed index structures to the concept of locality sensitive hashing (LSH). Specifically, we devise four different LSH schemes for Kendall's Tau using two generic hash families over individual elements or pairs of them. We show that each of these functions has the desired property of being locality sensitive. Further, we discuss the selection of hash functions for the proposed LSH schemes for a given query ranking, called query-driven LSH and derive bounds for the required number of hash functions to use in order to achieve a predefined recall goal. Experimental results, using two real-world datasets, show that the devised methods outperform the SimJoin method---the state of the art method to query for similar sets---and are far superior to a plain inverted-index--based approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肯德尔τ距离下Top-k列表的高效相似性搜索
在广义Kendall’s Tau距离下,研究了top-k列表集的相似性搜索问题。这个距离描述了两个排名在不一致排序项目方面的关联程度。我们考虑基于对和三元组的索引来克服朴素倒排索引的缺点,并通过将所提出的索引结构与位置敏感哈希(LSH)的概念联系起来,得出有效的查询方案。具体来说,我们为Kendall的Tau设计了四种不同的LSH方案,使用两个通用哈希族来处理单个元素或它们对。我们证明了这些函数都具有局部敏感的理想性质。此外,我们讨论了针对给定查询排名(称为查询驱动LSH)的拟议LSH方案的哈希函数选择,并推导了为实现预定义的召回目标而使用的所需哈希函数数量的界限。使用两个真实数据集的实验结果表明,所设计的方法优于SimJoin方法(查询相似集的最先进方法),并且远远优于普通的基于逆索引的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SMS: Stable Matching Algorithm using Skylines Graph-based modelling of query sets for differential privacy Efficient Feedback Collection for Pay-as-you-go Source Selection Multi-Assignment Single Joins for Parallel Cross-Match of Astronomic Catalogs on Heterogeneous Clusters Compact and queryable representation of raster datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1