Supervised Noise Reduction for Clustering on Automotive 4D Radar

Michael Lutz, Monsij Biswal
{"title":"Supervised Noise Reduction for Clustering on Automotive 4D Radar","authors":"Michael Lutz, Monsij Biswal","doi":"10.1109/SSCI50451.2021.9659953","DOIUrl":null,"url":null,"abstract":"In the automotive industry, radar technology is an essential component for object identification due to its low cost and robust accuracy in harsh weather conditions. Clustering, an unsupervised machine learning technique, groups together individual radar responses to detect objects. Because clustering is a significant step in the automotive object identification pipeline, cluster quality and speed are especially critical. To that extent, density-based clustering algorithms have made significant progress due to their ability to operate on data sets with an unknown quantity of clusters. However, many density-based clustering algorithms such as DBSCAN remain unable to deal with inherently noisy radar data. Furthermore, many existing algorithms are not adapted to operate on state-of-the-art 4D radar systems. Thus, we propose a novel pipeline that utilizes supervised machine learning to predict noisy points on 4D radar point clouds by leveraging historical data. We then input noise predictions into two proposed cluster formation approaches, respectively involving dynamic and fixed search radii. Our best performing model performs roughly 153 percent better than the baseline DBSCAN in terms of V-Measure, and our quickest model finishes in 75 percent less time than DBSCAN while performing 130 percent better in terms of V-Measure.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the automotive industry, radar technology is an essential component for object identification due to its low cost and robust accuracy in harsh weather conditions. Clustering, an unsupervised machine learning technique, groups together individual radar responses to detect objects. Because clustering is a significant step in the automotive object identification pipeline, cluster quality and speed are especially critical. To that extent, density-based clustering algorithms have made significant progress due to their ability to operate on data sets with an unknown quantity of clusters. However, many density-based clustering algorithms such as DBSCAN remain unable to deal with inherently noisy radar data. Furthermore, many existing algorithms are not adapted to operate on state-of-the-art 4D radar systems. Thus, we propose a novel pipeline that utilizes supervised machine learning to predict noisy points on 4D radar point clouds by leveraging historical data. We then input noise predictions into two proposed cluster formation approaches, respectively involving dynamic and fixed search radii. Our best performing model performs roughly 153 percent better than the baseline DBSCAN in terms of V-Measure, and our quickest model finishes in 75 percent less time than DBSCAN while performing 130 percent better in terms of V-Measure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车四维雷达聚类的监督降噪方法
在汽车工业中,雷达技术是物体识别的重要组成部分,因为它在恶劣天气条件下成本低,精度高。聚类是一种无监督的机器学习技术,它将单个雷达响应组合在一起以检测物体。由于聚类是汽车对象识别流程中的重要步骤,因此聚类的质量和速度尤为关键。在这种程度上,基于密度的聚类算法已经取得了重大进展,因为它们能够对具有未知数量聚类的数据集进行操作。然而,许多基于密度的聚类算法(如DBSCAN)仍然无法处理固有的噪声雷达数据。此外,许多现有算法不适合在最先进的4D雷达系统上运行。因此,我们提出了一种新的管道,利用有监督的机器学习来利用历史数据预测4D雷达点云上的噪声点。然后,我们将噪声预测输入到两种提出的聚类形成方法中,分别涉及动态和固定搜索半径。在V-Measure方面,我们表现最好的模型比基准DBSCAN大约好153%,我们最快的模型比DBSCAN少75%的时间完成,而在V-Measure方面表现好130%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1