Electrostatic spray deposition of Li4Ti5O12 based anode with enhanced rate capability and energy density for lithium-ion batteries

Chunhui Chen, R. Agrawal, Chunlei Wang
{"title":"Electrostatic spray deposition of Li4Ti5O12 based anode with enhanced rate capability and energy density for lithium-ion batteries","authors":"Chunhui Chen, R. Agrawal, Chunlei Wang","doi":"10.1117/12.2228905","DOIUrl":null,"url":null,"abstract":"Li4Ti5O12 (LTO) is one of the most promising anode materials for lithium-ion batteries (LIBs) due to its excellent cyclability and extraordinary structure stability during lithium-ion intercalation and deintercalation. However, LTO suffers from the low electronic conductivity and low theoretical capacity, which results in poor rate capability and low energy density. The present work reviews the latest achievement on improving both energy and power density of LTO based anode materials for LIBs. In addition, our recent results on electrostatic spray deposition (ESD) derived LTO electrode is also discussed. Electrochemical test shows that the resulting LTO has a large specific capacity of 293 mAh g-1 under a current density of 0.15 A g-1 and high rate capacity of 73 mAh g-1 under 3 A g-1. As compared with commercial LTO nano-particle electrode, the improved electrochemical performance of ESD-LTO could be attributed to the structure advantages generate from ESD which could lead to reduced diffusion length for lithium ions and electrons.","PeriodicalId":299313,"journal":{"name":"SPIE Commercial + Scientific Sensing and Imaging","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Commercial + Scientific Sensing and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2228905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Li4Ti5O12 (LTO) is one of the most promising anode materials for lithium-ion batteries (LIBs) due to its excellent cyclability and extraordinary structure stability during lithium-ion intercalation and deintercalation. However, LTO suffers from the low electronic conductivity and low theoretical capacity, which results in poor rate capability and low energy density. The present work reviews the latest achievement on improving both energy and power density of LTO based anode materials for LIBs. In addition, our recent results on electrostatic spray deposition (ESD) derived LTO electrode is also discussed. Electrochemical test shows that the resulting LTO has a large specific capacity of 293 mAh g-1 under a current density of 0.15 A g-1 and high rate capacity of 73 mAh g-1 under 3 A g-1. As compared with commercial LTO nano-particle electrode, the improved electrochemical performance of ESD-LTO could be attributed to the structure advantages generate from ESD which could lead to reduced diffusion length for lithium ions and electrons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静电喷涂沉积提高锂离子电池倍率和能量密度的Li4Ti5O12基阳极
Li4Ti5O12 (LTO)由于其优异的可循环性和在锂离子插入和脱嵌过程中优异的结构稳定性而成为锂离子电池(LIBs)最有前途的负极材料之一。然而,LTO的电子导电性低,理论容量低,导致其倍率性能差,能量密度低。本文综述了在提高锂离子电池负极材料能量密度和功率密度方面的最新进展。此外,还讨论了静电喷涂沉积(ESD)衍生的LTO电极的最新研究成果。电化学测试表明,该LTO在0.15 a g-1电流密度下具有293 mAh g-1的大比容量,在3 a g-1电流密度下具有73 mAh g-1的高倍率容量。与商用LTO纳米颗粒电极相比,ESD-LTO电化学性能的提高可归因于ESD产生的结构优势,可以减少锂离子和电子的扩散长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low temperature processing of dielectric perovskites for energy storage Design of an automated cart and mount for a hyperspectral imaging system to be used in produce fields Applicability of ion mobility spectrometry for detection of quarantine pests in wood Calibrating IR cameras for in-situ temperature measurement during the electron beam melt processing of Inconel 718 and Ti-Al6-V4 Applying remote sensing expertise to crop improvement: progress and challenges to scale up high throughput field phenotyping from research to industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1