Multimodal Music Emotion Recognition based on WLDNN_GAN

Lanqing Yin, Jiandong Tang, Jinming Yu
{"title":"Multimodal Music Emotion Recognition based on WLDNN_GAN","authors":"Lanqing Yin, Jiandong Tang, Jinming Yu","doi":"10.1109/ISAIEE57420.2022.00114","DOIUrl":null,"url":null,"abstract":"In order to solve the current concern of music emotion recognition, this paper proposes the WLDNN_GAN algorithm, the abstract obtained music features are MFCC features, GTF features, midi music information features, through these three features for music emotion recognition and classification. Using the same dataset, the MSE, RMSE and R2 of some currently popular model models are compared horizontally for evaluation, and the experimental results show that the model proposed in this paper can achieve excellent performance in analysing music emotion information.","PeriodicalId":345703,"journal":{"name":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIEE57420.2022.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the current concern of music emotion recognition, this paper proposes the WLDNN_GAN algorithm, the abstract obtained music features are MFCC features, GTF features, midi music information features, through these three features for music emotion recognition and classification. Using the same dataset, the MSE, RMSE and R2 of some currently popular model models are compared horizontally for evaluation, and the experimental results show that the model proposed in this paper can achieve excellent performance in analysing music emotion information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于WLDNN_GAN的多模态音乐情感识别
为了解决当前人们对音乐情感识别的关注,本文提出了WLDNN_GAN算法,抽象得到的音乐特征有MFCC特征、GTF特征、midi音乐信息特征,通过这三个特征对音乐情感进行识别和分类。使用相同的数据集,横向比较了目前一些流行的模型模型的MSE、RMSE和R2进行评价,实验结果表明,本文提出的模型在音乐情感信息分析方面能够取得优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Parallel Data Mining Based on Spark Research and Development of a Portable Ultrasonic Device for Detecting Urine Volume Research on Data Transmission Simulation System Based on Computer 3D Simulation Technology Brain Tumor Prediction with LSTM Method CRIoU: A Complete and Relevant Bounding Box Regression Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1