HYDRODYNAMICAL INSTABILITY OF NEWTONIAN FLOW BEFORE AN AXISYMMETRIC SUDDEN CONTRACTION

V. Orel, B. Pitsyshyn, Tetiana Konyk
{"title":"HYDRODYNAMICAL INSTABILITY OF NEWTONIAN FLOW BEFORE AN AXISYMMETRIC SUDDEN CONTRACTION","authors":"V. Orel, B. Pitsyshyn, Tetiana Konyk","doi":"10.23939/jtbp2021.02.032","DOIUrl":null,"url":null,"abstract":"The sizes of the vortex region before the axisymmetric sudden contraction of the circular pipe at the Newtonian flow have been investigated. Area ratios 0.250 and 0.500 were considered. The sizes of the vortex region have the extreme dependence with a maximum at the transition of the laminar flow into a turbulent flow one. When the Reynolds number at the laminar flow increase, these sizes also increase, and they decrease at the turbulent flow. In both cases, the sizes of the vortex region are proportional to the Reynolds number. A transition region between laminar flow and turbulent flow lies in the range of the Reynolds number from 3000 to 5300 and 750…1300, determined by the diameter of a bigger pipe of sudden expansion and a step height correspondingly","PeriodicalId":369033,"journal":{"name":"Theory and Building Practice","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Building Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jtbp2021.02.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sizes of the vortex region before the axisymmetric sudden contraction of the circular pipe at the Newtonian flow have been investigated. Area ratios 0.250 and 0.500 were considered. The sizes of the vortex region have the extreme dependence with a maximum at the transition of the laminar flow into a turbulent flow one. When the Reynolds number at the laminar flow increase, these sizes also increase, and they decrease at the turbulent flow. In both cases, the sizes of the vortex region are proportional to the Reynolds number. A transition region between laminar flow and turbulent flow lies in the range of the Reynolds number from 3000 to 5300 and 750…1300, determined by the diameter of a bigger pipe of sudden expansion and a step height correspondingly
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴对称突然收缩前牛顿流体的水动力不稳定性
研究了在牛顿流条件下圆管轴对称突然收缩前的涡区大小。考虑面积比为0.250和0.500。涡旋区域的大小有极大的依赖性,并在层流向湍流过渡时达到最大值。当层流处雷诺数增加时,这些尺寸也随之增加,而在湍流处则减小。在这两种情况下,涡旋区域的大小与雷诺数成正比。层流与湍流之间的过渡区域位于雷诺数3000 ~ 5300和750 ~ 1300范围内,由较大的突胀管直径和相应的阶跃高度决定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INJECTION OF CRACKS IN A RC BEAM WITH EPOXY RESIN USING THE GRAVITY FLOW METHOD OVER-STABILIZED BITUMEN EMULSIONS MADE FROM EMULSIFIERS FOR SLOW-SETTING EMULSIONS METHOD OF ARRANGEMENT OF INTERNAL THERMAL INSULATION OF EXTERNAL PROTECTIVE STRUCTURES OF THE ROOM STUDY OF FINE-GRAINED FIBER CONCRETE CRACKING RESISTANCE FROM THE POINT OF VIEW OF DESTRUCTION MECHANICS CONCRETE ON QUARTZITE AGGREGATES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1