Autonomous Flight Control for Multirotors by a Simple Input-Output Linearization with Nested Saturation

Y. Yoon, Eric N. Johnson, L. Ren
{"title":"Autonomous Flight Control for Multirotors by a Simple Input-Output Linearization with Nested Saturation","authors":"Y. Yoon, Eric N. Johnson, L. Ren","doi":"10.1109/CCTA.2018.8511557","DOIUrl":null,"url":null,"abstract":"Multirotors are one of the most popular types of small unmanned aircraft systems today with applications in many areas including but not limited to aerial photography, transport, military, surveillance, agriculture, and leisure. Autonomous flight controls is one of the key enabler technologies for their popularity and growing applications. Many studies about the flight controls for multirotors have enhanced the control performance, but we still have rooms to improve in tracking accuracy and efficiency. This paper presents an autonomous flight control method for multirotors based on a simple input-output linearization coupled with nested saturation. We choose an unconventional, alternative output of the multirotor flight control system, which leads to reducing computational cost regarding Lie algebra when we linearize the system dynamics. Then we stabilize the linearized system with nested saturation with real poles of our own choice. Given the desired output through the outer loop PID controller, the results of the simulations show that the error dynamics regarding the outputs are stabilized exponentially fast.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multirotors are one of the most popular types of small unmanned aircraft systems today with applications in many areas including but not limited to aerial photography, transport, military, surveillance, agriculture, and leisure. Autonomous flight controls is one of the key enabler technologies for their popularity and growing applications. Many studies about the flight controls for multirotors have enhanced the control performance, but we still have rooms to improve in tracking accuracy and efficiency. This paper presents an autonomous flight control method for multirotors based on a simple input-output linearization coupled with nested saturation. We choose an unconventional, alternative output of the multirotor flight control system, which leads to reducing computational cost regarding Lie algebra when we linearize the system dynamics. Then we stabilize the linearized system with nested saturation with real poles of our own choice. Given the desired output through the outer loop PID controller, the results of the simulations show that the error dynamics regarding the outputs are stabilized exponentially fast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌套饱和简单输入输出线性化的多旋翼自主飞行控制
多旋翼是当今最受欢迎的小型无人机系统之一,在许多领域都有应用,包括但不限于航空摄影,运输,军事,监视,农业和休闲。自主飞行控制是其普及和应用日益广泛的关键使能技术之一。许多关于多旋翼飞行控制的研究已经提高了多旋翼的控制性能,但在跟踪精度和效率方面仍有很大的提高空间。提出了一种基于简单输入输出线性化与嵌套饱和耦合的多旋翼自主飞行控制方法。我们选择了一种非常规的、可替换的多旋翼飞行控制系统输出,从而在线性化系统动力学时减少了李代数的计算成本。然后我们用我们自己选择的实极点来稳定线性化系统的嵌套饱和。通过外环PID控制器给定期望输出,仿真结果表明,输出的误差动态以指数级速度稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1