InfoMoD: Information-theoretic Model Diagnostics

Armin Esmaeilzadeh, Lukasz Golab, K. Taghva
{"title":"InfoMoD: Information-theoretic Model Diagnostics","authors":"Armin Esmaeilzadeh, Lukasz Golab, K. Taghva","doi":"10.1145/3603719.3603725","DOIUrl":null,"url":null,"abstract":"Validating and debugging machine learning models is done by testing them on unseen data. Analyzing model performance on various subsets of the data is critical for fairness, trust, bias detection and explainablility. In this paper, we describe a new way to do this. Our solution, called InfoMoD, applies recent work in information-theoretic data summarization to the problem of model diagnostics. Using real-life datasets, we show how InfoMod concisely describes how a model performs across different subsets of the data and produces expected performance indicators for individual test instances.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Validating and debugging machine learning models is done by testing them on unseen data. Analyzing model performance on various subsets of the data is critical for fairness, trust, bias detection and explainablility. In this paper, we describe a new way to do this. Our solution, called InfoMoD, applies recent work in information-theoretic data summarization to the problem of model diagnostics. Using real-life datasets, we show how InfoMod concisely describes how a model performs across different subsets of the data and produces expected performance indicators for individual test instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息理论模型诊断
机器学习模型的验证和调试是通过在不可见的数据上进行测试来完成的。分析模型在不同数据子集上的性能对于公平性、信任、偏见检测和可解释性至关重要。在本文中,我们描述了一种新的方法来做到这一点。我们的解决方案称为InfoMoD,它将信息论数据总结方面的最新成果应用于模型诊断问题。使用真实的数据集,我们展示了InfoMod如何简明地描述模型如何跨数据的不同子集执行,并为单个测试实例生成预期的性能指示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SciDG: Benchmarking Scientific Dynamic Graph Queries ST-CopulaGNN : A Multi-View Spatio-Temporal Graph Neural Network for Traffic Forecasting A Long-term Time Series Forecasting method with Multiple Decomposition Early ICU Mortality Prediction with Deep Federated Learning: A Real-World Scenario Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1