Performance Analysis of Transfer Learning Methods for Malaria Disease Identification

E.S.K. Chandrasekara, S. Vidanagamachchi
{"title":"Performance Analysis of Transfer Learning Methods for Malaria Disease Identification","authors":"E.S.K. Chandrasekara, S. Vidanagamachchi","doi":"10.1109/SCSE59836.2023.10214984","DOIUrl":null,"url":null,"abstract":"Malaria has become a widespread disease and one of the leading causes of many deaths worldwide. Malaria is a blood disease brought on by Plasmodium parasites, which are transmitted by the bite of a female Anopheles mosquito. To diagnose the condition, medical experts analyse thick and thin blood smears. However, their precision is dependent on the quality of the smear and experience in categorising and counting parasitized and uninfected cells. Such an investigation could be complicated and time-consuming for large-scale diagnosis, resulting in poor quality as well. Deep learning (DL) approaches such as Convolutional Neural Networks (CNN) offer highly scalable and improved performance with end-to-end feature extraction and classification in cutting-edge image analysis-based computer-aided-diagnosis (CAD) procedures. Automated malaria screening employing DL approaches could contribute in the development of an effective diagnostic aid. In this study, we assessed the efficacy of VGG16, EfficientNetB3, InceptionV3, and ResNet50 as feature extractors to categorise parasitized and uninfected cells and aid in enhanced malaria disease screening. Our results showed that optimum accuracy of 0.97 is achieved after 40 epochs. Our study demonstrated the successful application of deep learning techniques, specifically ResNet50 and EfficientNetB3, among the analysed models, for malaria disease screening and detection.","PeriodicalId":429228,"journal":{"name":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCSE59836.2023.10214984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria has become a widespread disease and one of the leading causes of many deaths worldwide. Malaria is a blood disease brought on by Plasmodium parasites, which are transmitted by the bite of a female Anopheles mosquito. To diagnose the condition, medical experts analyse thick and thin blood smears. However, their precision is dependent on the quality of the smear and experience in categorising and counting parasitized and uninfected cells. Such an investigation could be complicated and time-consuming for large-scale diagnosis, resulting in poor quality as well. Deep learning (DL) approaches such as Convolutional Neural Networks (CNN) offer highly scalable and improved performance with end-to-end feature extraction and classification in cutting-edge image analysis-based computer-aided-diagnosis (CAD) procedures. Automated malaria screening employing DL approaches could contribute in the development of an effective diagnostic aid. In this study, we assessed the efficacy of VGG16, EfficientNetB3, InceptionV3, and ResNet50 as feature extractors to categorise parasitized and uninfected cells and aid in enhanced malaria disease screening. Our results showed that optimum accuracy of 0.97 is achieved after 40 epochs. Our study demonstrated the successful application of deep learning techniques, specifically ResNet50 and EfficientNetB3, among the analysed models, for malaria disease screening and detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迁移学习方法在疟疾疾病识别中的性能分析
疟疾已成为一种广泛传播的疾病,也是全世界许多人死亡的主要原因之一。疟疾是一种由疟原虫引起的血液疾病,疟原虫是通过雌性按蚊的叮咬传播的。为了诊断病情,医学专家分析了厚血涂片和薄血涂片。然而,它们的准确性取决于涂片的质量以及对寄生和未感染细胞进行分类和计数的经验。这样的调查对于大规模诊断来说既复杂又耗时,结果质量也很差。深度学习(DL)方法,如卷积神经网络(CNN),在基于尖端图像分析的计算机辅助诊断(CAD)程序中,提供了高度可扩展和改进的端到端特征提取和分类性能。采用深度学习方法的自动化疟疾筛查有助于开发有效的诊断工具。在这项研究中,我们评估了VGG16、EfficientNetB3、InceptionV3和ResNet50作为特征提取器对寄生和未感染细胞进行分类的功效,并帮助增强疟疾疾病筛查。结果表明,经过40次迭代后,该方法的最佳精度为0.97。我们的研究证明了深度学习技术,特别是ResNet50和EfficientNetB3,在分析模型中的成功应用,用于疟疾疾病的筛查和检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Music Similarity through Siamese CNNs using Triplet Loss on Music Samples Impacts of Integrated Railway-Based Containerized Cargo Transport Network to Connect the Port of Colombo and Free Trade Zones in Sri Lanka Investigating Factors Influencing Behavioral Intention Toward Green Computing Practices Among Undergraduates In Sri Lankan Universities Preserving India’s Rich Dance Heritage: A Classification of Indian Dance Forms and Innovative Digital Management Solutions for Cultural Heritage Conservation An Automatic Density Cluster Generation Method to Identify the Amount of Tool Flank Wear via Tool Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1