Sentiment analysis of social network posts in Slovak language

Rastislav Krchnavy, Marián Simko
{"title":"Sentiment analysis of social network posts in Slovak language","authors":"Rastislav Krchnavy, Marián Simko","doi":"10.1109/SMAP.2017.8022661","DOIUrl":null,"url":null,"abstract":"In this paper we tackle the issue of sentiment analysis of social network posts in a not well targeted language — Slovak. There is a significant lack of research in this area for minor languages, as they often introduce additional language-specific issues for text processing. In case of Slovak, common issues are high flection, complex morphology and syntax. User-generated content of social networks introduces additional challenges (variability of diacritics, inconsistent style, high error rate) that make the task even harder. In this paper, we propose a method for sentiment analysis of social network posts on Facebook. The proposed method is based on machine learning and incorporates multilevel text pre-processing aiming to deal with specifics of user-generated social content. The evaluation in a real-word setting employing data from Facebook pages of multiple well-known companies shows accuracy of our method comparable with approaches for major world languages.","PeriodicalId":441461,"journal":{"name":"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2017.8022661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we tackle the issue of sentiment analysis of social network posts in a not well targeted language — Slovak. There is a significant lack of research in this area for minor languages, as they often introduce additional language-specific issues for text processing. In case of Slovak, common issues are high flection, complex morphology and syntax. User-generated content of social networks introduces additional challenges (variability of diacritics, inconsistent style, high error rate) that make the task even harder. In this paper, we propose a method for sentiment analysis of social network posts on Facebook. The proposed method is based on machine learning and incorporates multilevel text pre-processing aiming to deal with specifics of user-generated social content. The evaluation in a real-word setting employing data from Facebook pages of multiple well-known companies shows accuracy of our method comparable with approaches for major world languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斯洛伐克语社交网络帖子的情感分析
在本文中,我们解决了在一个不太有针对性的语言-斯洛伐克的社交网络帖子的情感分析问题。小语种在这一领域的研究非常缺乏,因为它们经常为文本处理引入额外的语言特定问题。在斯洛伐克语中,常见的问题是高度反射,复杂的形态和句法。社交网络的用户生成内容引入了额外的挑战(变音符号的可变性、不一致的风格、高错误率),使任务变得更加困难。在本文中,我们提出了一种对Facebook社交网络帖子进行情感分析的方法。该方法基于机器学习,并结合了多层次文本预处理,旨在处理用户生成的社交内容的细节。在使用多家知名公司Facebook页面数据的真实世界环境中进行的评估表明,我们的方法的准确性可与世界主要语言的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards adaptive brain-computer interfaces: Improving accuracy of detection of event-related potentials High-performance and lightweight real-time deep face emotion recognition Visual pollution localization through crowdsourcing and visual similarity clustering A survey on political event analysis in Twitter Sentiment analysis of social network posts in Slovak language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1