Implementation of GCPSO for Multi-objective VAr Planning with SVC and Its Comparison with GA and PSO

M. Farsangi, H. Nezamabadi-pour, K.Y. Lee
{"title":"Implementation of GCPSO for Multi-objective VAr Planning with SVC and Its Comparison with GA and PSO","authors":"M. Farsangi, H. Nezamabadi-pour, K.Y. Lee","doi":"10.1109/ISAP.2007.4441632","DOIUrl":null,"url":null,"abstract":"In this paper, Guaranteed Convergence Particle Swarm Optimization (GCPSO) Algorithm is used for VAr planning with the Static Var Compensators (SVC) in a large-scale power system. To enhance voltage stability, the planning problem is formulated as a multiobjective optimization problem for maximizing fuzzy performance indices. The multi-objective VAr planning problem is solved by the fuzzy GCPSO and the results are compared with those obtained by the Particle Swarm Optimization (PSO) and Genetic Algorithm","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, Guaranteed Convergence Particle Swarm Optimization (GCPSO) Algorithm is used for VAr planning with the Static Var Compensators (SVC) in a large-scale power system. To enhance voltage stability, the planning problem is formulated as a multiobjective optimization problem for maximizing fuzzy performance indices. The multi-objective VAr planning problem is solved by the fuzzy GCPSO and the results are compared with those obtained by the Particle Swarm Optimization (PSO) and Genetic Algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVC的GCPSO多目标VAr规划及其与遗传算法和粒子群算法的比较
本文将保证收敛粒子群优化(GCPSO)算法应用于大型电力系统静态无功补偿器(SVC)的无功规划。为了提高电压稳定性,将规划问题化为模糊性能指标最大化的多目标优化问题。利用模糊GCPSO算法求解多目标VAr规划问题,并与粒子群算法和遗传算法的求解结果进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1