Two-Stage License Plate Detection Using Gentle Adaboost and SIFT-SVM

W. T. Ho, Hao Wooi Lim, Yong Haur Tay
{"title":"Two-Stage License Plate Detection Using Gentle Adaboost and SIFT-SVM","authors":"W. T. Ho, Hao Wooi Lim, Yong Haur Tay","doi":"10.1109/ACIIDS.2009.25","DOIUrl":null,"url":null,"abstract":"This paper presents a two-stage method to detect license plates in real world images. To do license plate detection (LPD), an initial set of possible license plate character regions are first obtained by the first stage classifier and then passed to the second stage classifier to reject non-character regions. 36 Adaboost classifiers (each trained with one alpha-numerical character, i.e. A..Z, 0..9) serve as the first stage classifier. In the second stage, a support vector machine (SVM) trained on scale-invariant feature transform (SIFT) descriptors obtained from training sub-windows were employed. A recall rate of 0.920792 and precision rate of 0.90185 was obtained.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

This paper presents a two-stage method to detect license plates in real world images. To do license plate detection (LPD), an initial set of possible license plate character regions are first obtained by the first stage classifier and then passed to the second stage classifier to reject non-character regions. 36 Adaboost classifiers (each trained with one alpha-numerical character, i.e. A..Z, 0..9) serve as the first stage classifier. In the second stage, a support vector machine (SVM) trained on scale-invariant feature transform (SIFT) descriptors obtained from training sub-windows were employed. A recall rate of 0.920792 and precision rate of 0.90185 was obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于温和Adaboost和SIFT-SVM的两阶段车牌检测
本文提出了一种两阶段车牌检测方法。车牌检测(LPD)首先由第一阶段分类器获得一组可能的车牌字符区域,然后传递给第二阶段分类器来拒绝非字符区域。36个Adaboost分类器(每个分类器使用一个字母数字字符进行训练,即A…Z, 0…9)作为第一阶段分类器。在第二阶段,使用支持向量机(SVM)对从训练子窗口获得的尺度不变特征变换(SIFT)描述子进行训练。召回率为0.920792,准确率为0.90185。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Data-Searching Algorithms for a Real-Time Information-Delivery System Fuzzy Classification of Incomplete Data with Adaptive Volume Exploring the Use of Social Communications Technologies in Tasks and Its Performance in Organizations Implicit Camera Calibration Using MultiLayer Perceptron Type Neural Network Improved Letter Weighting Feature Selection on Arabic Script Language Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1