Illusory contour detection using MRF models

S. Madarasmi, T. Pong, D. Kersten
{"title":"Illusory contour detection using MRF models","authors":"S. Madarasmi, T. Pong, D. Kersten","doi":"10.1109/ICNN.1994.374966","DOIUrl":null,"url":null,"abstract":"This paper presents a computational model for obtaining relative depth information from image contours. Local occlusion properties such as T-junctions and concavity are used to arrive at a global percept of distinct surfaces at various relative depths. A multilayer representation is used to classify each image pixel into the appropriate depth plane based on the local information from the occluding contours. A Bayesian framework is used to incorporate the constraints defined by the contours and the prior constraints. A solution corresponding to the maximum posteriori probability is then determined, resulting in a depth assignment and surface assignment for each image site or pixel. The algorithm was tested on various contour images, including two classes of illusory surfaces: the Kanizsa (1979) and the line termination illusory contours.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a computational model for obtaining relative depth information from image contours. Local occlusion properties such as T-junctions and concavity are used to arrive at a global percept of distinct surfaces at various relative depths. A multilayer representation is used to classify each image pixel into the appropriate depth plane based on the local information from the occluding contours. A Bayesian framework is used to incorporate the constraints defined by the contours and the prior constraints. A solution corresponding to the maximum posteriori probability is then determined, resulting in a depth assignment and surface assignment for each image site or pixel. The algorithm was tested on various contour images, including two classes of illusory surfaces: the Kanizsa (1979) and the line termination illusory contours.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁共振成像模型的虚幻轮廓检测
本文提出了一种从图像轮廓中获取相对深度信息的计算模型。局部遮挡特性,如t结点和凹性,用于在不同的相对深度到达不同表面的全局感知。基于遮挡轮廓的局部信息,采用多层表示将每个图像像素划分到合适的深度平面。使用贝叶斯框架将轮廓定义的约束和先验约束结合起来。然后确定对应于最大后验概率的解决方案,从而为每个图像站点或像素进行深度分配和表面分配。该算法在各种轮廓图像上进行了测试,包括两类虚幻表面:Kanizsa(1979)和线终止虚幻轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1