Low-rank and nonlinear model approach to image inpainting

Ryohei Sasaki, K. Konishi, Tomohiro Takahashi, T. Furukawa
{"title":"Low-rank and nonlinear model approach to image inpainting","authors":"Ryohei Sasaki, K. Konishi, Tomohiro Takahashi, T. Furukawa","doi":"10.23919/EUSIPCO.2017.8081224","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm for image inpainting algorithm based on the matrix rank minimization with nonlinear mapping function. Assuming that each intensity value of a nonlinear mapped image can be modeled by the autoregressive (AR) model, the image inpainting problem is formulated as a kind of the matrix rank minimization problem, and this paper modifies the iterative partial matrix shrinkage (IPMS) algorithm and provides an inpainting algorithm, which estimates a nonlinear mapping function and the missing pixels simultaneously. Numerical examples show that the proposed algorithm recovers missing pixels efficiently.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new algorithm for image inpainting algorithm based on the matrix rank minimization with nonlinear mapping function. Assuming that each intensity value of a nonlinear mapped image can be modeled by the autoregressive (AR) model, the image inpainting problem is formulated as a kind of the matrix rank minimization problem, and this paper modifies the iterative partial matrix shrinkage (IPMS) algorithm and provides an inpainting algorithm, which estimates a nonlinear mapping function and the missing pixels simultaneously. Numerical examples show that the proposed algorithm recovers missing pixels efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像绘制的低秩非线性模型方法
本文提出了一种基于非线性映射函数的矩阵秩最小化的图像绘制算法。假设非线性映射图像的每个强度值都可以用自回归(AR)模型建模,将图像的上色问题化为一种矩阵秩最小化问题,并对迭代部分矩阵收缩(IPMS)算法进行改进,提出了一种同时估计非线性映射函数和缺失像素的上色算法。数值算例表明,该算法能有效地恢复缺失像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1