Performance analysis of cognitive radio networks over к-μ fading channel with noise uncertainty

Fabio von Glehn, U. Dias
{"title":"Performance analysis of cognitive radio networks over к-μ fading channel with noise uncertainty","authors":"Fabio von Glehn, U. Dias","doi":"10.1109/RWS.2014.6830090","DOIUrl":null,"url":null,"abstract":"In order to be able to perform a Spectrum Sensing in a reliably manner we must take in consideration a physical fading model which will fit with the reality presented. In this work we analyze the energy detection characteristics over a generalized fading channel, modeled by the κ-μ distribution. Admitting the noise power estimation error, the worst-case of the probabilities of miss detection and false-alarm, due to the noise uncertainty, are derived under the spectrum utilization constraint. An optimal threshold selection is presented in order to allow the energy detector to operate in regions of low SNR. Field measurements are used to investigate in practice the usefulness of the κ-μ fading channel in cooperative spectrum sensing scenarios. Comparisons are performed against Rice fading model where it is possible to notice a great advantage in using the κ-μ distribution to describe the fading channel.","PeriodicalId":247495,"journal":{"name":"2014 IEEE Radio and Wireless Symposium (RWS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2014.6830090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to be able to perform a Spectrum Sensing in a reliably manner we must take in consideration a physical fading model which will fit with the reality presented. In this work we analyze the energy detection characteristics over a generalized fading channel, modeled by the κ-μ distribution. Admitting the noise power estimation error, the worst-case of the probabilities of miss detection and false-alarm, due to the noise uncertainty, are derived under the spectrum utilization constraint. An optimal threshold selection is presented in order to allow the energy detector to operate in regions of low SNR. Field measurements are used to investigate in practice the usefulness of the κ-μ fading channel in cooperative spectrum sensing scenarios. Comparisons are performed against Rice fading model where it is possible to notice a great advantage in using the κ-μ distribution to describe the fading channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有噪声不确定性的认知无线网络的性能分析
为了能够可靠地进行频谱感知,我们必须考虑符合实际情况的物理衰落模型。在这项工作中,我们分析了广义衰落信道上的能量检测特性,该信道由κ-μ分布建模。在考虑噪声功率估计误差的情况下,在频谱利用约束下,导出了由于噪声不确定性导致的误检概率和漏检概率的最坏情况。为了使能量检测器能在低信噪比区域工作,提出了一种最佳阈值选择方法。通过现场测量,研究了κ-μ衰落信道在协同频谱感知场景中的实用性。与Rice衰落模型进行了比较,在Rice衰落模型中可以注意到使用κ-μ分布描述衰落信道的巨大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrothermal modeling of PIN diode protection circuits in MRI surface coils Universal wideband reconfigurable transceiver with extended frequency range up to 6 GHz 3D-integrated, low-height, small module design techniques for 4.48GHz, 560MHz-bandwidth TransferJet™ transceiver Realizing non-Foster reactances using negative-group-delay networks and applications to antennas A tunable directional coupler with a wide tuning range of coupling ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1