Constant duty cycle sinusoidal output inverter with sine amplitude modulated high frequency link

G. Knabben, D. Neumayr, J. Kolar
{"title":"Constant duty cycle sinusoidal output inverter with sine amplitude modulated high frequency link","authors":"G. Knabben, D. Neumayr, J. Kolar","doi":"10.1109/APEC.2018.8341372","DOIUrl":null,"url":null,"abstract":"Despite the increasing performance of power semi-conductors and passives components, limited timing resolution in off-the-shelf available digital control hardware often prevents the switching frequency in kW-scale dc/ac power conversion to be increased above several MHz for the sake of extreme power densities. In this paper an alternative approach to generate a sinusoidal output voltage, based on constant duty cycle frequency shift control of a high frequency resonant inverter stage and a subsequent synchronous cycloconverter, is analyzed. The design of the presented converter is facilitated by means of a derived mathematical model. A novel closed-loop control system is proposed which achieves tight regulation of the output voltage by means of controlling the switching frequencies of the involved bridge legs operated in resonant mode. Characteristic waveforms of the dc/ac converter during steady-state and load transients are presented. Two distinct implementations of the resonant inverter stage, constituting an intermediate voltage or intermediate current link, are analysed and compared.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Despite the increasing performance of power semi-conductors and passives components, limited timing resolution in off-the-shelf available digital control hardware often prevents the switching frequency in kW-scale dc/ac power conversion to be increased above several MHz for the sake of extreme power densities. In this paper an alternative approach to generate a sinusoidal output voltage, based on constant duty cycle frequency shift control of a high frequency resonant inverter stage and a subsequent synchronous cycloconverter, is analyzed. The design of the presented converter is facilitated by means of a derived mathematical model. A novel closed-loop control system is proposed which achieves tight regulation of the output voltage by means of controlling the switching frequencies of the involved bridge legs operated in resonant mode. Characteristic waveforms of the dc/ac converter during steady-state and load transients are presented. Two distinct implementations of the resonant inverter stage, constituting an intermediate voltage or intermediate current link, are analysed and compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒占空比正弦输出逆变器正弦振幅调制高频链路
尽管功率半导体和无源元件的性能不断提高,但现有数字控制硬件中有限的时序分辨率通常会阻止kw级dc/ac功率转换中的开关频率增加到几MHz以上,以实现极端功率密度。本文分析了一种产生正弦输出电压的替代方法,该方法是基于高频谐振逆变级和随后的同步环变换器的恒占空比移频控制。通过推导出的数学模型,简化了变换器的设计。提出了一种新颖的闭环控制系统,通过控制相关桥腿在谐振模式下的开关频率来实现对输出电压的严格调节。给出了直流/交流变换器稳态和负载瞬态的特征波形。两种不同的谐振逆变级的实现,构成中电压或中电流链路,进行了分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Duty phase shift technique for extended-duty-ratio boost converter for reducing device voltage stress over wider operating range Reliability evaluation of an impedance-source PV microconverter A hybrid flyback LED driver with utility grid and renewable energy interface A transformerless single-phase symmetrical Z-source HERIC inverter with reduced leakage currents for PV systems A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1