A day-ahead electricity price prediction based on a fuzzy-neuro autoregressive model in a deregulated electricity market

T. Niimura, H. Ko, K. Ozawa
{"title":"A day-ahead electricity price prediction based on a fuzzy-neuro autoregressive model in a deregulated electricity market","authors":"T. Niimura, H. Ko, K. Ozawa","doi":"10.1109/IJCNN.2002.1007714","DOIUrl":null,"url":null,"abstract":"Presents a fuzzy regression model to estimate uncertain electricity market prices in a deregulated industry environment. The price of electricity in a deregulated market is very volatile in time. Therefore, it is difficult to estimate an accurate market price using historically observed data. In the proposed method, uncertain market prices are estimated by an autoregressive model using a neural network, and the time series model is extended to a fuzzy model to consider the possible ranges of market prices. The neural network finds the crisp value for the AR model and then the low and high ranges of the fuzzy model are found by linear programming. Therefore, the proposed model can represent the possible ranges of a day-ahead market price. For a numerical example, the model is applied to California Power Exchange market data.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Presents a fuzzy regression model to estimate uncertain electricity market prices in a deregulated industry environment. The price of electricity in a deregulated market is very volatile in time. Therefore, it is difficult to estimate an accurate market price using historically observed data. In the proposed method, uncertain market prices are estimated by an autoregressive model using a neural network, and the time series model is extended to a fuzzy model to consider the possible ranges of market prices. The neural network finds the crisp value for the AR model and then the low and high ranges of the fuzzy model are found by linear programming. Therefore, the proposed model can represent the possible ranges of a day-ahead market price. For a numerical example, the model is applied to California Power Exchange market data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放松管制电力市场下基于模糊神经自回归模型的日前电价预测
提出了一种模糊回归模型来估计在放松管制的工业环境下不确定的电力市场价格。在解除管制的市场中,电价随时间的变化非常不稳定。因此,很难用历史观察数据来估计准确的市场价格。该方法利用神经网络对不确定市场价格进行自回归估计,并将时间序列模型扩展为模糊模型,以考虑市场价格的可能范围。神经网络首先确定AR模型的清晰值,然后通过线性规划确定模糊模型的高低范围。因此,所提出的模型可以表示前一天市场价格的可能范围。最后,将该模型应用于美国加州电力交易所的市场数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1