Pietro M. Ferreira, Nathan De Carvalho, G. Klisnick, Aziz Benlarbi-Delaï
{"title":"Energy efficient fJ/spike LTS e-Neuron using 55-nm node","authors":"Pietro M. Ferreira, Nathan De Carvalho, G. Klisnick, Aziz Benlarbi-Delaï","doi":"10.1145/3338852.3339852","DOIUrl":null,"url":null,"abstract":"While CMOS technology is currently reaching its limits in power consumption and circuit density, a challenger is emerging from the analogy between biology and silicon. Hardware-based neural networks may drive a new generation of bio-inspired computers by the urge of a hardware solution for real-time applications. This paper redesigns a previous proposed electronic neuron (e-Neuron) in a higher firing rate to reduce the silicon area and highlight a better energy efficiency trade-off. Besides, an innovative schematic is proposed to state an e-Neuron library based on Izhikevichs model of neural firing patterns. Both e-Neuron circuits are designed using 55 nm technology node. Physical design of transistors in weak inversion are discussed to a minimal leakage. Neural firing pattern behaviors are validated by post-layout simulations, demonstrating the spike frequency adaptation and the rebound spikes due to post-inhibitory effect in LTS e-Neuron. Presented results suggest that the time to rebound spikes is dependent of the excitation current amplitude. Both e-Neurons have presented a fF/spike energy efficiency and a smaller silicon area in comparison to Izhikevichs library propositions in the literature.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"32 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
While CMOS technology is currently reaching its limits in power consumption and circuit density, a challenger is emerging from the analogy between biology and silicon. Hardware-based neural networks may drive a new generation of bio-inspired computers by the urge of a hardware solution for real-time applications. This paper redesigns a previous proposed electronic neuron (e-Neuron) in a higher firing rate to reduce the silicon area and highlight a better energy efficiency trade-off. Besides, an innovative schematic is proposed to state an e-Neuron library based on Izhikevichs model of neural firing patterns. Both e-Neuron circuits are designed using 55 nm technology node. Physical design of transistors in weak inversion are discussed to a minimal leakage. Neural firing pattern behaviors are validated by post-layout simulations, demonstrating the spike frequency adaptation and the rebound spikes due to post-inhibitory effect in LTS e-Neuron. Presented results suggest that the time to rebound spikes is dependent of the excitation current amplitude. Both e-Neurons have presented a fF/spike energy efficiency and a smaller silicon area in comparison to Izhikevichs library propositions in the literature.