Parallel Metagenomic Sequence Clustering Via Sketching and Maximal Quasi-clique Enumeration on Map-Reduce Clouds

X. Yang, J. Zola, S. Aluru
{"title":"Parallel Metagenomic Sequence Clustering Via Sketching and Maximal Quasi-clique Enumeration on Map-Reduce Clouds","authors":"X. Yang, J. Zola, S. Aluru","doi":"10.1109/IPDPS.2011.116","DOIUrl":null,"url":null,"abstract":"Taxonomic clustering of species is an important and frequently arising problem in metagenomics. High-throughput next generation sequencing is facilitating the creation of large metagenomic samples, while at the same time making the clustering problem harder due to the short sequence length supported and unknown species sampled. In this paper, we present a parallel algorithm for hierarchical taxonomic clustering of large metagenomic samples with support for overlapping clusters. We adapt the sketching techniques originally developed for web document clustering to deduce significant similarities between pairs of sequences without resorting to expensive all vs. all alignments. We formulate the metagenomics classification problem as that of maximal quasi-clique enumeration in the resulting similarity graph, at multiple levels of the hierarchy as prescribed by different similarity thresholds. We cast execution of the underlying algorithmic steps as applications of the map-reduce framework to achieve a cloud based implementation. Apart from solving an important problem in metagenomics, this work demonstrates the applicability of map-reduce framework in relatively complicated algorithmic settings.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Taxonomic clustering of species is an important and frequently arising problem in metagenomics. High-throughput next generation sequencing is facilitating the creation of large metagenomic samples, while at the same time making the clustering problem harder due to the short sequence length supported and unknown species sampled. In this paper, we present a parallel algorithm for hierarchical taxonomic clustering of large metagenomic samples with support for overlapping clusters. We adapt the sketching techniques originally developed for web document clustering to deduce significant similarities between pairs of sequences without resorting to expensive all vs. all alignments. We formulate the metagenomics classification problem as that of maximal quasi-clique enumeration in the resulting similarity graph, at multiple levels of the hierarchy as prescribed by different similarity thresholds. We cast execution of the underlying algorithmic steps as applications of the map-reduce framework to achieve a cloud based implementation. Apart from solving an important problem in metagenomics, this work demonstrates the applicability of map-reduce framework in relatively complicated algorithmic settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Map-Reduce云上草图绘制和最大拟团枚举的并行宏基因组序列聚类
物种的分类聚类是宏基因组学中一个重要且经常出现的问题。高通量新一代测序有利于创建大型宏基因组样本,但同时由于支持的序列长度较短且样本物种未知,使得聚类问题更加困难。本文提出了一种支持重叠聚类的大型宏基因组样本分层分类聚类并行算法。我们采用了最初为web文档聚类开发的草图技术来推断序列对之间的显著相似性,而无需求助于昂贵的all vs all比对。我们将宏基因组分类问题表述为结果相似图中的最大拟团枚举问题,在不同的相似阈值规定的层次结构的多个级别上。我们将底层算法步骤的执行转换为map-reduce框架的应用程序,以实现基于云的实现。除了解决宏基因组学中的一个重要问题外,这项工作还证明了map-reduce框架在相对复杂的算法设置中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1