Multi-source information based comprehensive condition evaluation model for power transformer

Yiming Zheng, Wenhao Wang, W. He, Hao-jun Liu, Xiang Sun, J. Zhan, Guoping Zou
{"title":"Multi-source information based comprehensive condition evaluation model for power transformer","authors":"Yiming Zheng, Wenhao Wang, W. He, Hao-jun Liu, Xiang Sun, J. Zhan, Guoping Zou","doi":"10.1109/APPEEC.2016.7779776","DOIUrl":null,"url":null,"abstract":"So as to adapt to the condition-based maintenance of power equipment and to overcome the disadvantages and deficiencies of traditional condition evaluation model in data acquisition approaches, component classifications, performance indicators and scoring model, a comprehensive condition evaluation model (CCEM) was proposed in this paper based on multi-source information. Combined with the offline test, online detection, online monitoring, inspection and operating environment, equipment criteria, undesirable service condition (USC) and family defects were reclassified in this model. Practice example verified that the proposed model can describe the power transformer state more comprehensively and immediately. The evaluation results provide scientific guidance for front-line operation and maintenance staffs to develop equipment maintenance strategy, and also practical basis for the condition evaluation of other power equipment.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

So as to adapt to the condition-based maintenance of power equipment and to overcome the disadvantages and deficiencies of traditional condition evaluation model in data acquisition approaches, component classifications, performance indicators and scoring model, a comprehensive condition evaluation model (CCEM) was proposed in this paper based on multi-source information. Combined with the offline test, online detection, online monitoring, inspection and operating environment, equipment criteria, undesirable service condition (USC) and family defects were reclassified in this model. Practice example verified that the proposed model can describe the power transformer state more comprehensively and immediately. The evaluation results provide scientific guidance for front-line operation and maintenance staffs to develop equipment maintenance strategy, and also practical basis for the condition evaluation of other power equipment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多源信息的电力变压器综合状态评估模型
为了适应电力设备的状态维护,克服传统状态评估模型在数据采集方法、部件分类、性能指标和评分模型等方面的缺点和不足,提出了一种基于多源信息的综合状态评估模型(CCEM)。结合离线测试、在线检测、在线监测、检测和运行环境、设备准则、不良使用条件(USC)和家庭缺陷进行了重新分类。实例验证了该模型能更全面、更直观地描述电力变压器的状态。评估结果为一线运维人员制定设备维修策略提供了科学指导,也为其他电力设备的状态评估提供了实践依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1