Sensor dynamics in high dimensional phase spaces via nonlinear transformations: Application to helicopter loads monitoring

J. J. Valdés, C. Cheung, Matthew Li
{"title":"Sensor dynamics in high dimensional phase spaces via nonlinear transformations: Application to helicopter loads monitoring","authors":"J. J. Valdés, C. Cheung, Matthew Li","doi":"10.1109/CIDM.2014.7008691","DOIUrl":null,"url":null,"abstract":"Accurately determining component loads on a helicopter is an important goal in the helicopter structural integrity field, with repercussions on safety, component damage, maintenance schedules and other operations. Measuring dynamic component loads directly is possible, but these measurement methods are costly and are difficult to maintain. While the ultimate goal is to estimate the loads from flight state and control system parameters available in most helicopters, a necessary step is understanding the behavior of the loads under different flight conditions. This paper explores the behavior of the main rotor normal bending loads in level flight, steady turn and rolling pullout flight conditions, as well as the potential of computational intelligence methods in understanding the dynamics. Time delay methods, residual variance analysis (gamma test) using genetic algorithms, unsupervised non-linear mapping and recurrence plot and quantification analysis were used. The results from this initial work demonstrate that there are important differences in the load behavior of the main rotor blade under the different flight conditions which must be taken into account when working with machine learning methods for developing prediction models.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurately determining component loads on a helicopter is an important goal in the helicopter structural integrity field, with repercussions on safety, component damage, maintenance schedules and other operations. Measuring dynamic component loads directly is possible, but these measurement methods are costly and are difficult to maintain. While the ultimate goal is to estimate the loads from flight state and control system parameters available in most helicopters, a necessary step is understanding the behavior of the loads under different flight conditions. This paper explores the behavior of the main rotor normal bending loads in level flight, steady turn and rolling pullout flight conditions, as well as the potential of computational intelligence methods in understanding the dynamics. Time delay methods, residual variance analysis (gamma test) using genetic algorithms, unsupervised non-linear mapping and recurrence plot and quantification analysis were used. The results from this initial work demonstrate that there are important differences in the load behavior of the main rotor blade under the different flight conditions which must be taken into account when working with machine learning methods for developing prediction models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性变换的高维相空间传感器动力学:在直升机载荷监测中的应用
准确确定直升机部件载荷是直升机结构完整性领域的一个重要目标,它关系到安全、部件损坏、维修计划和其他操作。直接测量动态组件负载是可能的,但这些测量方法成本高且难以维护。虽然最终目标是根据大多数直升机的飞行状态和控制系统参数估计载荷,但必要的一步是了解载荷在不同飞行条件下的行为。本文探讨了主旋翼在水平飞行、稳定转弯和滚拉飞行条件下的法向弯曲载荷行为,以及计算智能方法在理解动力学方面的潜力。采用时滞法、遗传算法残差方差分析(gamma检验)、无监督非线性映射、递归图和量化分析。这项初步工作的结果表明,在不同的飞行条件下,主旋翼叶片的负载行为存在重要差异,这在使用机器学习方法开发预测模型时必须考虑到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1