M. A. Badshah, Seong-min Lee, Chengjun Jin, Seong-Cheol Byeon, Tasadduq Hussain, Muzahir Ali, Seok-min Kim
{"title":"Metal Enhanced Fluorescence Microarray Biochip using Glancing Angle Deposited Ag nanorods","authors":"M. A. Badshah, Seong-min Lee, Chengjun Jin, Seong-Cheol Byeon, Tasadduq Hussain, Muzahir Ali, Seok-min Kim","doi":"10.1109/ICTC55196.2022.9952634","DOIUrl":null,"url":null,"abstract":"Glancing angle deposition (GLAD) is a physical vapor deposition process in which the substrate is placed to have a large incidence angle (>75°, angle between incoming flux and substrate normal). The GLAD process can be considered a promising method to fabricate metallic nanostructure on a large area at a low cost. GLAD Ag nanorods were fabricated and their fluorescence enhancement performances were examined. A practical antibody chip was realized using a 500 nm thick vertical Ag nanorods substrate. To overcome the limitations of GLAD Ag nanorod MEF substrate, Ag nanorods on micro post array substrate were also investigated.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glancing angle deposition (GLAD) is a physical vapor deposition process in which the substrate is placed to have a large incidence angle (>75°, angle between incoming flux and substrate normal). The GLAD process can be considered a promising method to fabricate metallic nanostructure on a large area at a low cost. GLAD Ag nanorods were fabricated and their fluorescence enhancement performances were examined. A practical antibody chip was realized using a 500 nm thick vertical Ag nanorods substrate. To overcome the limitations of GLAD Ag nanorod MEF substrate, Ag nanorods on micro post array substrate were also investigated.