Robust candidate frame detection in videos using semantic content modeling

T. Manonmani, K. Mala
{"title":"Robust candidate frame detection in videos using semantic content modeling","authors":"T. Manonmani, K. Mala","doi":"10.1109/CNT.2014.7062770","DOIUrl":null,"url":null,"abstract":"Videos are of the most popular rich media formats carrying large amount of visual, audio and textual information. In recent years people all over the world show great interest in video mining to extract meaningful patterns and knowledge to enhance the smart level of video applications. In this work Speeded Up Robust Features (SURF) are used to detect the candidate frames among the set of key frames extracted from a video content. By eliminating the presence of duplicate key frames the computational and time complexity of processing a large number of frames is reduced. From the identified candidate frames semantic objects with meaningful content are extracted which improves the efficiency of video mining applications like Video recommendation systems, Video concept detection etc. Experimental results show that the proposed approach eliminates the duplicate frames without a prior knowledge of the video content.","PeriodicalId":347883,"journal":{"name":"2014 International Conference on Communication and Network Technologies","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNT.2014.7062770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Videos are of the most popular rich media formats carrying large amount of visual, audio and textual information. In recent years people all over the world show great interest in video mining to extract meaningful patterns and knowledge to enhance the smart level of video applications. In this work Speeded Up Robust Features (SURF) are used to detect the candidate frames among the set of key frames extracted from a video content. By eliminating the presence of duplicate key frames the computational and time complexity of processing a large number of frames is reduced. From the identified candidate frames semantic objects with meaningful content are extracted which improves the efficiency of video mining applications like Video recommendation systems, Video concept detection etc. Experimental results show that the proposed approach eliminates the duplicate frames without a prior knowledge of the video content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义内容建模的视频鲁棒候选帧检测
视频是最流行的富媒体格式之一,它承载了大量的视觉、音频和文本信息。近年来,人们对视频挖掘产生了浓厚的兴趣,希望从中提取有意义的模式和知识,提高视频应用的智能化水平。在这项工作中,使用加速鲁棒特征(SURF)来检测从视频内容中提取的关键帧集中的候选帧。通过消除重复关键帧的存在,降低了处理大量帧的计算和时间复杂度。从识别的候选帧中提取具有有意义内容的语义对象,提高了视频推荐系统、视频概念检测等视频挖掘应用的效率。实验结果表明,该方法在不需要事先了解视频内容的情况下消除了重复帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge extracting system for non-expert miners A review: Cardio vascular disease detection and an investigation of energy harvesting using biological parameters Enhancement of hand held device captured document images with phase preservation A capacitive fed printed loop antenna for ISM band Design and Analysis of Compact and Broadband High Gain Micro strip Patch Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1