CSIFT: A SIFT Descriptor with Color Invariant Characteristics

Alaa E. Abdel-Hakim, A. Farag
{"title":"CSIFT: A SIFT Descriptor with Color Invariant Characteristics","authors":"Alaa E. Abdel-Hakim, A. Farag","doi":"10.1109/CVPR.2006.95","DOIUrl":null,"url":null,"abstract":"SIFT has been proven to be the most robust local invariant feature descriptor. SIFT is designed mainly for gray images. However, color provides valuable information in object description and matching tasks. Many objects can be misclassified if their color contents are ignored. This paper addresses this problem and proposes a novel colored local invariant feature descriptor. Instead of using the gray space to represent the input image, the proposed approach builds the SIFT descriptors in a color invariant space. The built Colored SIFT (CSIFT) is more robust than the conventional SIFT with respect to color and photometrical variations. The evaluation results support the potential of the proposed approach.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"617","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 617

Abstract

SIFT has been proven to be the most robust local invariant feature descriptor. SIFT is designed mainly for gray images. However, color provides valuable information in object description and matching tasks. Many objects can be misclassified if their color contents are ignored. This paper addresses this problem and proposes a novel colored local invariant feature descriptor. Instead of using the gray space to represent the input image, the proposed approach builds the SIFT descriptors in a color invariant space. The built Colored SIFT (CSIFT) is more robust than the conventional SIFT with respect to color and photometrical variations. The evaluation results support the potential of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有颜色不变性特征的SIFT描述符
SIFT已被证明是最鲁棒的局部不变特征描述子。SIFT主要是针对灰度图像设计的。然而,颜色在物体描述和匹配任务中提供了有价值的信息。如果忽略许多物体的颜色内容,它们可能会被错误分类。针对这一问题,本文提出了一种新的彩色局部不变特征描述子。该方法不是使用灰度空间来表示输入图像,而是在颜色不变空间中构建SIFT描述子。所构建的彩色SIFT (CSIFT)在颜色和光度变化方面比传统SIFT具有更强的鲁棒性。评价结果支持了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1