{"title":"Face Recognition in Real-world Internet Videos Based on Deep Learning","authors":"Z. Li, Y. Tie, L. Qi","doi":"10.1109/ISNE.2019.8896630","DOIUrl":null,"url":null,"abstract":"Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.