Deep Neural Networks for fatty liver ultrasound images classification

Lei Zhang, Haijiang Zhu, Tengfei Yang
{"title":"Deep Neural Networks for fatty liver ultrasound images classification","authors":"Lei Zhang, Haijiang Zhu, Tengfei Yang","doi":"10.1109/CCDC.2019.8833364","DOIUrl":null,"url":null,"abstract":"Depth learning has been applied extensively in various fields of computer vision in recent year. Although a CNN-based network structure can obtain the ideal results in many image recognition, it is rarely used to classify the ultrasonic images of the fatty liver. This is principally because the fatty liver ultrasonic image has no obvious texture features and the low resolution. In this paper, we design the network structure for the characteristics of B-mode ultrasonic images, and utilize the CNN-based model to classify fatty liver ultrasound images. The experimental results show that we achieve a satisfactory classification effect through applying the proposed CNN network and this method is better than the traditional method for classifying fatty liver ultrasonic images.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8833364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Depth learning has been applied extensively in various fields of computer vision in recent year. Although a CNN-based network structure can obtain the ideal results in many image recognition, it is rarely used to classify the ultrasonic images of the fatty liver. This is principally because the fatty liver ultrasonic image has no obvious texture features and the low resolution. In this paper, we design the network structure for the characteristics of B-mode ultrasonic images, and utilize the CNN-based model to classify fatty liver ultrasound images. The experimental results show that we achieve a satisfactory classification effect through applying the proposed CNN network and this method is better than the traditional method for classifying fatty liver ultrasonic images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的脂肪肝超声图像分类
近年来,深度学习在计算机视觉的各个领域得到了广泛的应用。虽然基于cnn的网络结构在许多图像识别中都能获得理想的结果,但很少用于脂肪肝超声图像的分类。这主要是因为脂肪肝超声图像没有明显的纹理特征,分辨率较低。本文针对b型超声图像的特点设计网络结构,利用基于cnn的模型对脂肪肝超声图像进行分类。实验结果表明,我们通过应用所提出的CNN网络取得了满意的分类效果,并且该方法优于传统的脂肪肝超声图像分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Delayed state synchronization of homogeneous discrete-time multi-agent systems in the presence of unknown communication delays Road Garbage Cleaning Device Based on ZigBee Gateway and Image Recognition A New Switching Nonlinear Extended State Observer L2 String Stability of Heterogeneous Platoon under Disturbances and Information Delays Finite-Horizon Adaptive Dynamic Programming for Collaborative Target Tracking in Energy Harvesting Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1