{"title":"Microgrid provision of blackstart in disaster recovery for power system restoration","authors":"Anya Castillo","doi":"10.1109/SmartGridComm.2013.6688013","DOIUrl":null,"url":null,"abstract":"Prior system restoration studies have focused on contingency response more than disaster recovery. We develop a stochastic mixed integer linear program to assess the impact of coordinating microgrids (μGs) as a blackstart resource after a natural disaster. Existing research has demonstrated the blackstart capabilities of microgrids operated in islanded mode. We focus on the potential for microgrids to provide blackstart services to the regional grid or RTO. We differentiate micro-grids from traditional blackstart through modeling uncertainties, decoupled real and reactive DC power flows, and generator ramping and capability curves. We use parameters based on actual system operation studies for blackstart capability and optimal scheduling. We conclude that operable microgrids can provide sustainable benefits regardless of the natural disaster occurrence realized.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Prior system restoration studies have focused on contingency response more than disaster recovery. We develop a stochastic mixed integer linear program to assess the impact of coordinating microgrids (μGs) as a blackstart resource after a natural disaster. Existing research has demonstrated the blackstart capabilities of microgrids operated in islanded mode. We focus on the potential for microgrids to provide blackstart services to the regional grid or RTO. We differentiate micro-grids from traditional blackstart through modeling uncertainties, decoupled real and reactive DC power flows, and generator ramping and capability curves. We use parameters based on actual system operation studies for blackstart capability and optimal scheduling. We conclude that operable microgrids can provide sustainable benefits regardless of the natural disaster occurrence realized.