Android Malware Detection using Convolutional Deep Neural Networks

Fatima Bourebaa, M. Benmohammed
{"title":"Android Malware Detection using Convolutional Deep Neural Networks","authors":"Fatima Bourebaa, M. Benmohammed","doi":"10.1109/ICAASE51408.2020.9380104","DOIUrl":null,"url":null,"abstract":"Deep learning in general and convolutional architectures, in particular, have pushed the limits of the current state of the art in the field of computer vision and the processing of natural languages and speech. Recently, these techniques have been applied to detect mobile malware and have once again shown their ability to remedy this type of problem. However, the most suitable deep network architecture for malware detection remains an open issue. In this paper, we investigate the possibilities of convolutional neural networks for efficient detection of mobile malware. Specifically, we address the impact of using inception based and multichannel architectures on network performance. We achieve an accuracy of 92% using a multichannel model on a set of 50000 malware and 50000 benign applications.","PeriodicalId":405638,"journal":{"name":"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Aspects of Software Engineering (ICAASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAASE51408.2020.9380104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning in general and convolutional architectures, in particular, have pushed the limits of the current state of the art in the field of computer vision and the processing of natural languages and speech. Recently, these techniques have been applied to detect mobile malware and have once again shown their ability to remedy this type of problem. However, the most suitable deep network architecture for malware detection remains an open issue. In this paper, we investigate the possibilities of convolutional neural networks for efficient detection of mobile malware. Specifically, we address the impact of using inception based and multichannel architectures on network performance. We achieve an accuracy of 92% using a multichannel model on a set of 50000 malware and 50000 benign applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积深度神经网络的Android恶意软件检测
深度学习,特别是卷积架构,已经突破了当前计算机视觉和自然语言和语音处理领域的极限。最近,这些技术已被应用于检测移动恶意软件,并再次显示出它们解决此类问题的能力。然而,最适合恶意软件检测的深度网络架构仍然是一个悬而未决的问题。在本文中,我们研究了卷积神经网络有效检测移动恶意软件的可能性。具体来说,我们解决了使用基于初始和多通道架构对网络性能的影响。我们在50000个恶意软件和50000个良性应用程序上使用多通道模型实现了92%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensuring QoS and Efficiency of Vehicular Networks by SDVN-IoV A software development process based on UML state machines A Blockchain Data Balance Using a Generative Adversarial Network Approach: Application to Smart House IDS Development of an intelligent electronic sentinel for the monitoring and detection of meteorological phenomena due to global climate change Towards architectural view-driven modernization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1