Interpolated distanced bigram language models for robust word clustering

N. Bassiou, Constantine Kotropoulos
{"title":"Interpolated distanced bigram language models for robust word clustering","authors":"N. Bassiou, Constantine Kotropoulos","doi":"10.1109/NSIP.2005.1502228","DOIUrl":null,"url":null,"abstract":"Summary form only given. Two methods for interpolating the distanced bigram language model are examined which take into account pairs of words that appear at varying distances within a context. The language models under study yield a lower perplexity than the baseline bigram model. A word clustering algorithm based on mutual information with robust estimates of the mean vector and the covariance matrix is employed in the proposed interpolated language model. The word clusters obtained by using the aforementioned language model are proved more meaningful than the word clusters derived using the baseline bigram.","PeriodicalId":250223,"journal":{"name":"NSIP 2005. Abstracts. IEEE-Eurasip Nonlinear Signal and Image Processing, 2005.","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NSIP 2005. Abstracts. IEEE-Eurasip Nonlinear Signal and Image Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSIP.2005.1502228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Summary form only given. Two methods for interpolating the distanced bigram language model are examined which take into account pairs of words that appear at varying distances within a context. The language models under study yield a lower perplexity than the baseline bigram model. A word clustering algorithm based on mutual information with robust estimates of the mean vector and the covariance matrix is employed in the proposed interpolated language model. The word clusters obtained by using the aforementioned language model are proved more meaningful than the word clusters derived using the baseline bigram.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳健词聚类的插值距离双元语言模型
只提供摘要形式。考虑到在上下文中出现在不同距离的单词对,研究了两种插入距离双字母语言模型的方法。所研究的语言模型比基线双元图模型产生更低的困惑。提出了一种基于互信息的词聚类算法,该算法具有均值向量和协方差矩阵的鲁棒估计。使用上述语言模型得到的聚类比使用基线双元图得到的聚类更有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interpolated distanced bigram language models for robust word clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1