A new framework for direction-of-arrival estimation

S. Blunt, Tszping Chan, Karl Gerlach
{"title":"A new framework for direction-of-arrival estimation","authors":"S. Blunt, Tszping Chan, Karl Gerlach","doi":"10.1109/SAM.2008.4606829","DOIUrl":null,"url":null,"abstract":"A new approach for spatial direction-of-arrival (DOA) estimation is developed based on the minimum mean-square error (MMSE) framework. Unlike many traditional DOA estimators, the MMSE approach, denoted as Re-Iterative Super-Resolution (RISR), does not employ spatial sample covariance information which may significantly degrade DOA estimation if spatially-separated sources are temporally correlated. Instead, RISR is a recursive algorithm that relies on a structured signal covariance matrix comprised of the set of possible spatial steering vectors each weighted by an associated power estimate from the previous iteration. Furthermore, RISR can naturally accommodate prior information on spatially colored noise, does not require knowledge of the number of sources, and can also exploit multiple time samples in a non-coherent manner to improve performance. For low to moderate time sample support, RISR is demonstrated to provide super-resolution performance superior to MUSIC and spatially-smoothed MUSIC.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

A new approach for spatial direction-of-arrival (DOA) estimation is developed based on the minimum mean-square error (MMSE) framework. Unlike many traditional DOA estimators, the MMSE approach, denoted as Re-Iterative Super-Resolution (RISR), does not employ spatial sample covariance information which may significantly degrade DOA estimation if spatially-separated sources are temporally correlated. Instead, RISR is a recursive algorithm that relies on a structured signal covariance matrix comprised of the set of possible spatial steering vectors each weighted by an associated power estimate from the previous iteration. Furthermore, RISR can naturally accommodate prior information on spatially colored noise, does not require knowledge of the number of sources, and can also exploit multiple time samples in a non-coherent manner to improve performance. For low to moderate time sample support, RISR is demonstrated to provide super-resolution performance superior to MUSIC and spatially-smoothed MUSIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的到达方向估计框架
提出了一种基于最小均方误差(MMSE)框架的空间到达方向估计方法。与许多传统的DOA估计方法不同,被称为再迭代超分辨率(RISR)的MMSE方法不使用空间样本协方差信息,如果空间分离的源是时间相关的,则空间样本协方差信息可能会显著降低DOA估计。相反,RISR是一种递归算法,它依赖于一个结构化的信号协方差矩阵,该矩阵由一组可能的空间转向向量组成,每个向量由前一次迭代的相关功率估计加权。此外,RISR可以自然地容纳空间彩色噪声的先验信息,不需要了解源的数量,并且还可以以非相干的方式利用多时间样本来提高性能。对于低至中等时间样本支持,RISR被证明提供优于MUSIC和空间平滑MUSIC的超分辨率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1