Bi-directional PSFB DC-DC converter with unique PWM control schemes and seamless mode transitions using enhanced digital control

H. Nene, T. Zaitsu
{"title":"Bi-directional PSFB DC-DC converter with unique PWM control schemes and seamless mode transitions using enhanced digital control","authors":"H. Nene, T. Zaitsu","doi":"10.1109/APEC.2017.7931159","DOIUrl":null,"url":null,"abstract":"Isolated Bi-Directional DC-DC converters are commonly used in automotive and data storage applications where energy is transferred between a high-voltage DC bus and a low-voltage DC bus/battery in a bi-directional fashion. A typical implementation includes a phase-shifted full-bridge (PSFB) with synchronous rectification that controls power flow from the high-voltage bus to the low-voltage battery in step-down (buck) mode, and a current-fed push-pull converter that controls the reverse power flow from the low-voltage battery to the high-voltage bus in step-up (boost) mode. The major challenges to implement this PSFB bi-directional operation are; (1) High voltage bridge-FET rectification during reverse power flow (boost mode) in current-fed push-pull converter, (2) Fast seamless transitions between buck and boost modes. This paper presents system performance improvements obtained using 50% duty with phase-shift PWM control scheme to control high voltage bridge-FET rectification in reverse power flow. A new method that provides fast seamless transitions between buck and boost modes of operations is also presented. Experimental results obtained using a wide input range 400V ←→ 12 V, 300W digitally controlled isolated bi-directional DC-DC converter are presented.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7931159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Isolated Bi-Directional DC-DC converters are commonly used in automotive and data storage applications where energy is transferred between a high-voltage DC bus and a low-voltage DC bus/battery in a bi-directional fashion. A typical implementation includes a phase-shifted full-bridge (PSFB) with synchronous rectification that controls power flow from the high-voltage bus to the low-voltage battery in step-down (buck) mode, and a current-fed push-pull converter that controls the reverse power flow from the low-voltage battery to the high-voltage bus in step-up (boost) mode. The major challenges to implement this PSFB bi-directional operation are; (1) High voltage bridge-FET rectification during reverse power flow (boost mode) in current-fed push-pull converter, (2) Fast seamless transitions between buck and boost modes. This paper presents system performance improvements obtained using 50% duty with phase-shift PWM control scheme to control high voltage bridge-FET rectification in reverse power flow. A new method that provides fast seamless transitions between buck and boost modes of operations is also presented. Experimental results obtained using a wide input range 400V ←→ 12 V, 300W digitally controlled isolated bi-directional DC-DC converter are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双向PSFB DC-DC转换器具有独特的PWM控制方案和无缝模式转换,使用增强的数字控制
隔离式双向DC-DC转换器通常用于汽车和数据存储应用,其中能量以双向方式在高压直流母线和低压直流母线/电池之间传输。典型的实现包括带同步整流的移相全桥(PSFB),以降压(buck)模式控制从高压母线到低压电池的功率流,以及以升压(boost)模式控制从低压电池到高压母线的反向功率流的电流馈电推挽转换器。实施这种PSFB双向操作的主要挑战是:(1)电流馈电推挽式变换器在反向功率流(升压模式)时的高压电桥-场效应管整流;(2)降压模式和升压模式之间的快速无缝转换。本文介绍了采用50%占空比相移PWM控制方案来控制反向潮流中的高压桥式场效应管整流所获得的系统性能改进。提出了一种在降压模式和升压模式之间快速无缝转换的新方法。给出了宽输入范围400V←→12v、300W的数字控制隔离型双向DC-DC变换器的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping switching waveforms in a 650 V GaN FET bridge-leg using 6.7 GHz active gate drivers High frequency, single/dual phases, large AC/DC signal power characterization for two phase on-silicon coupled inductors Improved dynamics in DC-DC converters for IoT applications with repetitive load profiles using self-calibrated preemptive current control A new adaptive output voltage controller for fast battery charger Buck-type wide-range dimmable LED driver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1