ExanaDBT: A Dynamic Compilation System for Transparent Polyhedral Optimizations at Runtime

Yukinori Sato, Tomoya Yuki, Toshio Endo
{"title":"ExanaDBT: A Dynamic Compilation System for Transparent Polyhedral Optimizations at Runtime","authors":"Yukinori Sato, Tomoya Yuki, Toshio Endo","doi":"10.1145/3075564.3077627","DOIUrl":null,"url":null,"abstract":"In this paper, we present a dynamic compilation system called ExanaDBT for transparently optimizing and parallelizing binaries at runtime based on the polyhedral model. Starting from hot spot detection of the execution, ExanaDBT dynamically estimates gains for optimization, translates the target region into highly optimized code, and switches the execution of original code to optimized one. To realize advanced loop-level optimizations beyond trace- or instruction-level, ExanaDBT uses a polyhedral optimizer and performs loop transformation for rewarding sustainable performance gain on systems with deeper memory hierarchy. Especially for successful optimizations, we reveal that a simple conversion from the original binaries to LLVM IR will not enough for representing the code in polyhedral model, and then investigate a feasible way to lift binaries to the IR capable of polyhedral optimizations. We implement a proof-of-concept design of ExanaDBT and evaluate it. From the evaluation results, we confirm that ExanaDBT realizes dynamic optimization in a fully automated fashion. The results also show that ExanaDBT can contribute to speeding up the execution in average 3.2 times from unoptimized serial code in single thread execution and 11.9 times in 16 thread parallel execution.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3077627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we present a dynamic compilation system called ExanaDBT for transparently optimizing and parallelizing binaries at runtime based on the polyhedral model. Starting from hot spot detection of the execution, ExanaDBT dynamically estimates gains for optimization, translates the target region into highly optimized code, and switches the execution of original code to optimized one. To realize advanced loop-level optimizations beyond trace- or instruction-level, ExanaDBT uses a polyhedral optimizer and performs loop transformation for rewarding sustainable performance gain on systems with deeper memory hierarchy. Especially for successful optimizations, we reveal that a simple conversion from the original binaries to LLVM IR will not enough for representing the code in polyhedral model, and then investigate a feasible way to lift binaries to the IR capable of polyhedral optimizations. We implement a proof-of-concept design of ExanaDBT and evaluate it. From the evaluation results, we confirm that ExanaDBT realizes dynamic optimization in a fully automated fashion. The results also show that ExanaDBT can contribute to speeding up the execution in average 3.2 times from unoptimized serial code in single thread execution and 11.9 times in 16 thread parallel execution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ExanaDBT:运行时透明多面体优化的动态编译系统
在本文中,我们提出了一种名为 ExanaDBT 的动态编译系统,用于在运行时基于多面体模型透明地优化和并行化二进制文件。从执行热点检测开始,ExanaDBT 动态估计优化收益,将目标区域转化为高度优化的代码,并将原始代码的执行切换到优化代码。为了实现跟踪级或指令级之外的高级循环级优化,ExanaDBT 使用了多面体优化器,并在内存层次结构较深的系统上执行循环转换,以获得可持续的性能增益。特别是对于成功的优化,我们发现从原始二进制文件到 LLVM IR 的简单转换不足以用多面体模型表示代码,因此我们研究了一种可行的方法,将二进制文件提升到能够进行多面体优化的 IR。我们实现了 ExanaDBT 的概念验证设计并对其进行了评估。从评估结果来看,我们确认 ExanaDBT 以完全自动化的方式实现了动态优化。结果还显示,ExanaDBT 在单线程执行中比未经优化的串行代码平均加快了 3.2 倍,在 16 线程并行执行中加快了 11.9 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1