A motion model for tracking highly maneuvering targets

Qiao Xiangdong, W. Baoshu
{"title":"A motion model for tracking highly maneuvering targets","authors":"Qiao Xiangdong, W. Baoshu","doi":"10.1109/NRC.2002.999767","DOIUrl":null,"url":null,"abstract":"Mehrotra developed a jerk model for tracking highly maneuvering targets in 1997, which include terms at the most up to the third order derivatives of target position. The model is investigated in this paper. By theoretical analysis, it is shown that the filter, which based on the jerk model, may suffer from deterministic steady state estimation deviations. To find a way out of this question, a current statistic jerk model, for short cs-jerk, is developed, in which the jerk maneuvering is assumed to be an exponential correlated stochastic process with non-zero mean. It consists of the cs-jerk model of target motion, and a tracking filter with compatible order. The stable performance of the cs-jerk model is also analyzed and the result indicates that the cs-jerk model eliminates performance limitation of the jerk model. The improved performance of the cs-jerk model over the jerk model is illustrated through simulation.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Mehrotra developed a jerk model for tracking highly maneuvering targets in 1997, which include terms at the most up to the third order derivatives of target position. The model is investigated in this paper. By theoretical analysis, it is shown that the filter, which based on the jerk model, may suffer from deterministic steady state estimation deviations. To find a way out of this question, a current statistic jerk model, for short cs-jerk, is developed, in which the jerk maneuvering is assumed to be an exponential correlated stochastic process with non-zero mean. It consists of the cs-jerk model of target motion, and a tracking filter with compatible order. The stable performance of the cs-jerk model is also analyzed and the result indicates that the cs-jerk model eliminates performance limitation of the jerk model. The improved performance of the cs-jerk model over the jerk model is illustrated through simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高机动目标跟踪的运动模型
Mehrotra于1997年开发了一种用于跟踪高机动目标的扰动模型,该模型最多包含目标位置的三阶导数项。本文对该模型进行了研究。理论分析表明,基于跳变模型的滤波器存在确定性稳态估计偏差。为了解决这一问题,本文建立了一种统计抽动模型(简称cs-jerk),该模型将抽动机动假设为均值非零的指数相关随机过程。它由目标运动的cs-jerk模型和兼容阶数的跟踪滤波器组成。分析了cs-jerk模型的稳定性能,结果表明cs-jerk模型消除了jerk模型的性能限制。通过仿真说明了cs-jerk模型相对于jerk模型的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acceleration compensation by matched filtering Model-based adaptive detection and DOA estimation using separated sub-arrays Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration A new constrained joint-domain localized approach for airborne radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1