A novel approach for multi-object tracking using evidential representation for objects

W. Rekik, S. L. Hégarat-Mascle, Emanuel Aldea
{"title":"A novel approach for multi-object tracking using evidential representation for objects","authors":"W. Rekik, S. L. Hégarat-Mascle, Emanuel Aldea","doi":"10.23919/ICIF.2017.8009819","DOIUrl":null,"url":null,"abstract":"Despite many proposed solutions, multi-object tracking remains a challenging problem in complex situations involving partial occlusions and non-uniform and abrupt illumination changes. Considering modular systems, the tracking performance strongly depends on the consistency of the different blocks relatively to error features. In this work, using the Belief Function framework, we take into account the reliability and the imprecision of the object detection and location to characterize objects and to derive a reliable descriptor. Since this latter is then estimated only on safe object subparts, even in case of crosses between objects, we use a distance between descriptor robust to partial occlusion, namely the recently proposed Bin-Ratio-Distance. Results obtained on various actual sequences underline the interest of the proposed algorithm by outperforming the tested alternative approaches.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite many proposed solutions, multi-object tracking remains a challenging problem in complex situations involving partial occlusions and non-uniform and abrupt illumination changes. Considering modular systems, the tracking performance strongly depends on the consistency of the different blocks relatively to error features. In this work, using the Belief Function framework, we take into account the reliability and the imprecision of the object detection and location to characterize objects and to derive a reliable descriptor. Since this latter is then estimated only on safe object subparts, even in case of crosses between objects, we use a distance between descriptor robust to partial occlusion, namely the recently proposed Bin-Ratio-Distance. Results obtained on various actual sequences underline the interest of the proposed algorithm by outperforming the tested alternative approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于证据表示的多目标跟踪新方法
尽管提出了许多解决方案,但在涉及部分遮挡和非均匀和突然照明变化的复杂情况下,多目标跟踪仍然是一个具有挑战性的问题。对于模块化系统,跟踪性能在很大程度上取决于不同块相对于误差特征的一致性。在这项工作中,我们使用信念函数框架,考虑到目标检测和定位的可靠性和不精确性来描述目标,并推导出可靠的描述符。由于后者仅在安全目标子部分上估计,即使在物体之间交叉的情况下,我们使用对部分遮挡稳健的描述符之间的距离,即最近提出的Bin-Ratio-Distance。在各种实际序列上获得的结果强调了所提出的算法优于已测试的替代方法的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1