A three-dimensional model study of lateral pressure manifestation in gorge dump overburden

A. A. Khazaryan
{"title":"A three-dimensional model study of lateral pressure manifestation in gorge dump overburden","authors":"A. A. Khazaryan","doi":"10.21285/2686-9993-2022-45-1-73-79","DOIUrl":null,"url":null,"abstract":"Today the development of upland quarries with the formation of multi-tiered dumps of overburden rock mass in complex conditions of mountainous terrain and limited land resources still remains a problem. The conducted analysis has shown that the practice of designing of multi-tiered dumps in gorges lacks detailed consideration of the issues determining the stress distribution in the dump body depending on the dihedral angle formed by the slopes of the side faces of the gorge. The point is that the process of overburden dumping is accompanied with the transmission of stress forces to the central axial plane of the dump body formed in the gorge from the side of the gorge inclined surfaces. At the same time, the inclined component of stresses is due to the mass of overburden rocks dumped onto the inclined side surfaces of the gorge. Being directed at an angle to the shear forces acting in the dump, these lateral stresses play a positive role in the acceleration of rock mass consolidation in the clamped environment during the overburden dump formation. The decrease in dump shear forces leads to the increase in dump stability. It also allows to determine the rational volumes of overburden to be laid as well as the main parameters of a multi-tiered dump. It should be noted that there are significant difficulties in identifying and objective assessing the nature of occurrence and distribution of stress forces in the dump being constructed in the gorge using graphic-analytical methods. In the course of the presented study, the author made an attempt to identify and register stress forces in the body of a multi-tiered overburden dump formed in the gorge using physical modeling methods. For this purpose, a three-dimensional model test bench of a multi-tiered dump has been developed. This test bench allows to solve a three-dimensional problem using the method of physical modeling and, identify the stress variation patterns in the central axial plane of the dump model depending on the inclination angles of the side surfaces of the gorge.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2022-45-1-73-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today the development of upland quarries with the formation of multi-tiered dumps of overburden rock mass in complex conditions of mountainous terrain and limited land resources still remains a problem. The conducted analysis has shown that the practice of designing of multi-tiered dumps in gorges lacks detailed consideration of the issues determining the stress distribution in the dump body depending on the dihedral angle formed by the slopes of the side faces of the gorge. The point is that the process of overburden dumping is accompanied with the transmission of stress forces to the central axial plane of the dump body formed in the gorge from the side of the gorge inclined surfaces. At the same time, the inclined component of stresses is due to the mass of overburden rocks dumped onto the inclined side surfaces of the gorge. Being directed at an angle to the shear forces acting in the dump, these lateral stresses play a positive role in the acceleration of rock mass consolidation in the clamped environment during the overburden dump formation. The decrease in dump shear forces leads to the increase in dump stability. It also allows to determine the rational volumes of overburden to be laid as well as the main parameters of a multi-tiered dump. It should be noted that there are significant difficulties in identifying and objective assessing the nature of occurrence and distribution of stress forces in the dump being constructed in the gorge using graphic-analytical methods. In the course of the presented study, the author made an attempt to identify and register stress forces in the body of a multi-tiered overburden dump formed in the gorge using physical modeling methods. For this purpose, a three-dimensional model test bench of a multi-tiered dump has been developed. This test bench allows to solve a three-dimensional problem using the method of physical modeling and, identify the stress variation patterns in the central axial plane of the dump model depending on the inclination angles of the side surfaces of the gorge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
峡谷排土场覆岩侧压力表现的三维模型研究
目前,在山地地形复杂、土地资源有限的条件下,以形成多层堆积体的山地采石场的开发仍然是一个难题。分析表明,在三峡多层排土场的设计实践中,缺乏对根据峡谷两侧边坡形成的二面角确定排土场内部应力分布问题的详细考虑。重点是在卸土过程中伴随着应力从峡谷斜面侧面向峡谷内形成的卸土体中心轴面传递的过程。同时,应力的倾斜分量是由于倾倒在峡谷倾斜侧面上的大量覆盖岩。这些侧向应力与排土场中的剪切力方向成一定角度,在覆岩排土场形成过程中,对夹固环境下岩体的加速固结起着积极的作用。排土场剪切力的减小导致排土场稳定性的增加。它还可以确定要铺设的覆盖层的合理体积以及多层排土场的主要参数。应当指出的是,用图形分析方法确定和客观评价三峡库区正在建设的排土场的应力发生和分布的性质有很大的困难。在本文的研究过程中,作者尝试用物理模拟的方法来识别和记录峡谷内形成的多层覆盖排土场体内的应力。为此,研制了多层排土场三维模型试验台。该试验台可以利用物理建模的方法解决三维问题,并确定排土场模型中轴向面应力随峡谷侧壁倾角的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role and significance of geological heterogeneity in the formation of limestone productivity in the Famennian stage of the South Tatar arch Petroelastic modeling of Vereiskian and Bashkirian deposits on example of an oil field in the Republic of Tatarstan Influence of heterogeneity indicators on productivity index prediction efficiency (on example of carbonate reservoir deposits in the Ural-Volga region) Petrophysical taxa of diamond deposit of Komsomolskaya kimberlite pipe (Yakutsk diamondiferous province) Using photogrammetry to determine quarry slope stability coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1