Cluster-Guided Genetic Algorithm for Distributed Data-intensive Web Service Composition

Soheila Sadeghiram, Hui Ma, Gang Chen
{"title":"Cluster-Guided Genetic Algorithm for Distributed Data-intensive Web Service Composition","authors":"Soheila Sadeghiram, Hui Ma, Gang Chen","doi":"10.1109/CEC.2018.8477729","DOIUrl":null,"url":null,"abstract":"Automatic Web service composition has received much interest in the last decades. Data-intensive concepts have provided a promising computing paradigm for data-intensive Web service composition. Due to the complexity of the problem, metaheuristics in particular Evolutionary Computing (EC) techniques have been used for solving this composition problem. However, most of the current works neglected the distributed nature of data-intensive Web services. In this paper, we study the problem of distributed data-intensive service composition and propose a model which integrates attributes of constituent data-intensive Web services and attributes of the network. The core idea is to propose a communication cost and time model of a composed Web service considering communication delay and cost. We therefore propose a novel method based on Genetic Algorithm (GA) which uses a variation of K-means clustering algorithm.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Automatic Web service composition has received much interest in the last decades. Data-intensive concepts have provided a promising computing paradigm for data-intensive Web service composition. Due to the complexity of the problem, metaheuristics in particular Evolutionary Computing (EC) techniques have been used for solving this composition problem. However, most of the current works neglected the distributed nature of data-intensive Web services. In this paper, we study the problem of distributed data-intensive service composition and propose a model which integrates attributes of constituent data-intensive Web services and attributes of the network. The core idea is to propose a communication cost and time model of a composed Web service considering communication delay and cost. We therefore propose a novel method based on Genetic Algorithm (GA) which uses a variation of K-means clustering algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式数据密集型Web服务组合的集群引导遗传算法
自动Web服务组合在过去几十年中受到了广泛关注。数据密集型概念为数据密集型Web服务组合提供了一种很有前途的计算范式。由于问题的复杂性,元启发式特别是进化计算(EC)技术已被用于解决该组合问题。然而,目前的大多数工作都忽略了数据密集型Web服务的分布式特性。本文研究了分布式数据密集型Web服务的组合问题,提出了一个将组成数据密集型Web服务的属性与网络属性相结合的模型。其核心思想是提出一个考虑通信延迟和成本的组合Web服务的通信成本和时间模型。因此,我们提出了一种基于遗传算法(GA)的新方法,该方法使用k均值聚类算法的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Evolution of AutoEncoders for Compressed Representations Landscape-Based Differential Evolution for Constrained Optimization Problems A Novel Approach for Optimizing Ensemble Components in Rainfall Prediction A Many-Objective Evolutionary Algorithm with Fast Clustering and Reference Point Redistribution Manyobjective Optimization to Design Physical Topology of Optical Networks with Undefined Node Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1