Performance Prediction of Contact Separation Mode Triboelectric nanogenerators using Machine Learning Models

Ravikumar Puppala, K. Prakash, R. R. Kumar, Md. Farukh Hashmi, K. Kumar
{"title":"Performance Prediction of Contact Separation Mode Triboelectric nanogenerators using Machine Learning Models","authors":"Ravikumar Puppala, K. Prakash, R. R. Kumar, Md. Farukh Hashmi, K. Kumar","doi":"10.1109/PCEMS58491.2023.10136029","DOIUrl":null,"url":null,"abstract":"The use of Artificial Intelligence (AI) algorithms for analyzing practical data has increased with the advent of AI models. Combining physics and engineering has garnered a lot of interest so much, so that the triboelectric Nano-generators (TENG) industry may also use AI technologies. In this work, the classifiers suitable for predicting the system accuracy for TENG are analyzed. The experimental data used for training and testing, and two of the Machine Learning (ML) classifiers provided promising results: K Nearest Neighbor (KNN) and Neural Network (NN). Different ML parameters are generated such as precision, recall and F1 score with the help of Confusion matrix for KNN and NN of the practical TENG energy data. Additionally, we assess the TENG’s output quality in CS mode under various load factors using ML models.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Artificial Intelligence (AI) algorithms for analyzing practical data has increased with the advent of AI models. Combining physics and engineering has garnered a lot of interest so much, so that the triboelectric Nano-generators (TENG) industry may also use AI technologies. In this work, the classifiers suitable for predicting the system accuracy for TENG are analyzed. The experimental data used for training and testing, and two of the Machine Learning (ML) classifiers provided promising results: K Nearest Neighbor (KNN) and Neural Network (NN). Different ML parameters are generated such as precision, recall and F1 score with the help of Confusion matrix for KNN and NN of the practical TENG energy data. Additionally, we assess the TENG’s output quality in CS mode under various load factors using ML models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习模型的接触分离模式摩擦电纳米发电机性能预测
随着人工智能模型的出现,使用人工智能(AI)算法分析实际数据的情况有所增加。物理学和工程学的结合引起了很多人的兴趣,因此摩擦电纳米发电机(TENG)行业也可能使用人工智能技术。在这项工作中,分析了适合于预测TENG系统精度的分类器。用于训练和测试的实验数据以及两个机器学习(ML)分类器提供了有希望的结果:K最近邻(KNN)和神经网络(NN)。利用混淆矩阵对实际TENG能量数据的KNN和NN生成精度、召回率和F1分数等不同的ML参数。此外,我们使用ML模型评估了在各种负载因素下CS模式下TENG的输出质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1