Brain-controlled driving aid for electric wheelchairs

Nikhil Shinde, K. George
{"title":"Brain-controlled driving aid for electric wheelchairs","authors":"Nikhil Shinde, K. George","doi":"10.1109/BSN.2016.7516243","DOIUrl":null,"url":null,"abstract":"The Brain-computer interface (BCI) is an engaging field which could find applications in numerous fields like industrial, biomedical and engineering. In this paper a BCI based electric wheelchair driving aid design that utilizes mental concentration (EEG signals) and eye blinks (EMG signals) of the user, is presented. The design incorporates a safety controller with peripheral safety sensors that override the user command and stop the wheelchair when it detects an obstacle in its path. The wheelchair driving aid design is cost-effective (estimated cost less than $200) as it utilizes off-the-shelf BCI headset and electronics. Four experiments were conducted to validate the performance and reliability of the design.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The Brain-computer interface (BCI) is an engaging field which could find applications in numerous fields like industrial, biomedical and engineering. In this paper a BCI based electric wheelchair driving aid design that utilizes mental concentration (EEG signals) and eye blinks (EMG signals) of the user, is presented. The design incorporates a safety controller with peripheral safety sensors that override the user command and stop the wheelchair when it detects an obstacle in its path. The wheelchair driving aid design is cost-effective (estimated cost less than $200) as it utilizes off-the-shelf BCI headset and electronics. Four experiments were conducted to validate the performance and reliability of the design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动轮椅脑控驾驶辅助装置
脑机接口(BCI)是一个引人入胜的领域,可以在工业、生物医学和工程等众多领域找到应用。提出了一种基于脑机接口(BCI)的电动轮椅辅助驾驶系统设计,该设计利用了使用者的精神集中(EEG信号)和眨眼(EMG信号)。该设计结合了一个安全控制器和外围安全传感器,当轮椅检测到路径上的障碍物时,这些传感器可以覆盖用户的命令并停止轮椅。轮椅驾驶辅助装置的设计成本低廉(估计成本不到200美元),因为它使用了现成的BCI耳机和电子设备。通过4个实验验证了该设计的性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1