Classification of gear damage levels in planetary gearboxes

Zhiliang Liu, M. Zuo, J. Qu, Hongbing Xu
{"title":"Classification of gear damage levels in planetary gearboxes","authors":"Zhiliang Liu, M. Zuo, J. Qu, Hongbing Xu","doi":"10.1109/CIMSA.2011.6059913","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is a method of feature extraction that has demonstrated successful applications. The selection of the number of discriminant directions (r) is important to LDA, yet little attention is paid in the reported literature. In this paper a method is proposed for determining the optimal r in terms of the classification accuracy of support vector machine. The method is applied to identify gear damage levels in a planetary gearbox. Planet gears with four damage levels labeled as baseline, slight, moderate, and severe were used in lab experiments for data collection. Results demonstrate that the proposed method outperforms two reported methods and is effective to address the given problem.","PeriodicalId":422972,"journal":{"name":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2011.6059913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Linear discriminant analysis (LDA) is a method of feature extraction that has demonstrated successful applications. The selection of the number of discriminant directions (r) is important to LDA, yet little attention is paid in the reported literature. In this paper a method is proposed for determining the optimal r in terms of the classification accuracy of support vector machine. The method is applied to identify gear damage levels in a planetary gearbox. Planet gears with four damage levels labeled as baseline, slight, moderate, and severe were used in lab experiments for data collection. Results demonstrate that the proposed method outperforms two reported methods and is effective to address the given problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星齿轮箱齿轮损伤等级的分类
线性判别分析(LDA)是一种成功应用的特征提取方法。判别方向数(r)的选择对LDA很重要,但文献报道很少关注。本文提出了一种基于支持向量机分类精度确定最优r的方法。将该方法应用于行星齿轮箱齿轮损伤程度的识别。行星齿轮的四个损伤等级标记为基线,轻微,中等,和严重在实验室实验中用于数据收集。结果表明,该方法优于已有的两种方法,能够有效地解决给定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personal dosimeter for the measurement of artificial optical radiation (AOR) exposure Designing a fuzzy expert system to predict the concrete mix design Wildfire smoke detection using computational intelligence techniques Low-cost optimal state feedback fuzzy control of nonlinear second-order servo systems Intelligent control of bioreactor landfills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1