Optimal linear prediction for the lossless compression of volume data

J. Fowler, R. Yagel
{"title":"Optimal linear prediction for the lossless compression of volume data","authors":"J. Fowler, R. Yagel","doi":"10.1109/DCC.1995.515568","DOIUrl":null,"url":null,"abstract":"Summary form only given. Data in volume form consumes an extraordinary amount of storage space. For efficient storage and transmission of such data, compression algorithms are imperative. However, most volumetric data sets are used in biomedicine and other scientific applications where lossy compression is unacceptable. We present a lossless data compression algorithm which uses optimal linear prediction to exploit correlations in all three dimensions. Our algorithm is a combination of differential pulse-code modulation (DPCM) and Huffman coding and results in compression of around 50% for a set of volume data files. The compression algorithm was run with each of the different predictors on a set of volumes consisting of MRI images, CT images, and electron-density map data.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Summary form only given. Data in volume form consumes an extraordinary amount of storage space. For efficient storage and transmission of such data, compression algorithms are imperative. However, most volumetric data sets are used in biomedicine and other scientific applications where lossy compression is unacceptable. We present a lossless data compression algorithm which uses optimal linear prediction to exploit correlations in all three dimensions. Our algorithm is a combination of differential pulse-code modulation (DPCM) and Huffman coding and results in compression of around 50% for a set of volume data files. The compression algorithm was run with each of the different predictors on a set of volumes consisting of MRI images, CT images, and electron-density map data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体数据无损压缩的最优线性预测
只提供摘要形式。卷形式的数据消耗了大量的存储空间。为了有效地存储和传输这些数据,压缩算法是必不可少的。然而,大多数体积数据集用于生物医学和其他科学应用,在这些应用中有损压缩是不可接受的。我们提出了一种无损数据压缩算法,该算法使用最优线性预测来利用所有三个维度的相关性。我们的算法是差分脉冲编码调制(DPCM)和霍夫曼编码的组合,对一组体积数据文件压缩了大约50%。在一组由MRI图像、CT图像和电子密度图数据组成的数据集上,使用每种不同的预测器运行压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1