Distributed Deep Learning for Precipitation Nowcasting

S. Samsi, Christopher J. Mattioli, M. Veillette
{"title":"Distributed Deep Learning for Precipitation Nowcasting","authors":"S. Samsi, Christopher J. Mattioli, M. Veillette","doi":"10.1109/HPEC.2019.8916416","DOIUrl":null,"url":null,"abstract":"Effective training of Deep Neural Networks requires massive amounts of data and compute. As a result, longer times are needed to train complex models requiring large datasets, which can severely limit research on model development and the exploitation of all available data. In this paper, this problem is investigated in the context of precipitation nowcasting, a term used to describe highly detailed short-term forecasts of precipitation and other hazardous weather. Convolutional Neural Networks (CNNs) are a powerful class of models that are well-suited for this task; however, the high resolution input weather imagery combined with model complexity required to process this data makes training CNNs to solve this task time consuming. To address this issue, a data-parallel model is implemented where a CNN is replicated across multiple compute nodes and the training batches are distributed across multiple nodes. By leveraging multiple GPUs, we show that the training time for a given nowcasting model architecture can be reduced from 59 hours to just over 1 hour. This will allow for faster iterations for improving CNN architectures and will facilitate future advancement in the area of nowcasting.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Effective training of Deep Neural Networks requires massive amounts of data and compute. As a result, longer times are needed to train complex models requiring large datasets, which can severely limit research on model development and the exploitation of all available data. In this paper, this problem is investigated in the context of precipitation nowcasting, a term used to describe highly detailed short-term forecasts of precipitation and other hazardous weather. Convolutional Neural Networks (CNNs) are a powerful class of models that are well-suited for this task; however, the high resolution input weather imagery combined with model complexity required to process this data makes training CNNs to solve this task time consuming. To address this issue, a data-parallel model is implemented where a CNN is replicated across multiple compute nodes and the training batches are distributed across multiple nodes. By leveraging multiple GPUs, we show that the training time for a given nowcasting model architecture can be reduced from 59 hours to just over 1 hour. This will allow for faster iterations for improving CNN architectures and will facilitate future advancement in the area of nowcasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降水临近预报的分布式深度学习
深度神经网络的有效训练需要大量的数据和计算。因此,需要更长的时间来训练需要大数据集的复杂模型,这可能严重限制对模型开发和所有可用数据的利用的研究。本文在降水临近预报的背景下研究了这个问题,降水临近预报是一个用来描述降水和其他危险天气的非常详细的短期预报的术语。卷积神经网络(cnn)是一类非常适合这项任务的强大模型;然而,高分辨率输入的天气图像加上处理这些数据所需的模型复杂性使得训练cnn来解决这个任务非常耗时。为了解决这个问题,实现了一个数据并行模型,其中一个CNN在多个计算节点上复制,并且训练批次分布在多个节点上。通过利用多个gpu,我们证明了给定的临近投射模型架构的训练时间可以从59小时减少到1小时多一点。这将允许更快的迭代来改进CNN架构,并将促进未来在临近广播领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1