A nonparametric Bayesian model for forecasting residential solar generation

Thomas Power, G. Verbič
{"title":"A nonparametric Bayesian model for forecasting residential solar generation","authors":"Thomas Power, G. Verbič","doi":"10.1109/AUPEC.2017.8282508","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for generating synthetic residential solar generation profiles. Using the Dirichlet process, characteristics can be clustered and assigned to unobservable connections in a network. This approach retains the variance of this assignment introduced by sparse data, and allows for profiles to be generated specific to individual characteristics. It is also demonstrated that a Markov process modelling changing solar irradiance can be defined from existing solar generation data, rather than specific solar irradiance data in the event that it is not available. This model was applied to data sourced from Ausgrid's Smart Grid, Smart City Program, and a limited initial application found that profiles specific to assigned characteristics could be generated successfully.","PeriodicalId":155608,"journal":{"name":"2017 Australasian Universities Power Engineering Conference (AUPEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2017.8282508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a framework for generating synthetic residential solar generation profiles. Using the Dirichlet process, characteristics can be clustered and assigned to unobservable connections in a network. This approach retains the variance of this assignment introduced by sparse data, and allows for profiles to be generated specific to individual characteristics. It is also demonstrated that a Markov process modelling changing solar irradiance can be defined from existing solar generation data, rather than specific solar irradiance data in the event that it is not available. This model was applied to data sourced from Ausgrid's Smart Grid, Smart City Program, and a limited initial application found that profiles specific to assigned characteristics could be generated successfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
住宅太阳能发电预测的非参数贝叶斯模型
本文提出了一种生成合成住宅太阳能发电剖面的框架。使用狄利克雷过程,特征可以聚类并分配给网络中不可观察的连接。这种方法保留了由稀疏数据引入的分配的差异,并允许生成特定于个体特征的概要文件。还证明了马尔可夫过程建模改变太阳辐照度可以定义从现有的太阳能发电数据,而不是特定的太阳辐照度数据,如果它是不可用的。该模型被应用于来自澳大利亚电网的智能电网,智能城市计划的数据,并在有限的初始应用中发现,可以成功地生成特定于指定特征的配置文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of automatic hyperparameter tuning for residential load forecasting via deep learning Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer Modeling of multi-junction solar cells for maximum power point tracking to improve the conversion efficiency The importance of lightning education and a lightning protection risk assessment to reduce fatalities Recent advances in common mode voltage mitigation techniques based on MPC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1