Recovery of acronyms, out-of-lattice words and pronunciations from parallel multilingual speech

João Miranda, J. Neto, A. Black
{"title":"Recovery of acronyms, out-of-lattice words and pronunciations from parallel multilingual speech","authors":"João Miranda, J. Neto, A. Black","doi":"10.1109/SLT.2012.6424248","DOIUrl":null,"url":null,"abstract":"In this work we present a set of techniques which explore information from multiple, different language versions of the same speech, to improve Automatic Speech Recognition (ASR) performance. Using this redundant information we are able to recover acronyms, words that cannot be found in the multiple hypotheses produced by the ASR systems, and pronunciations absent from their pronunciation dictionaries. When used together, the three techniques yield a relative improvement of 5.0% over the WER of our baseline system, and 24.8% relative when compared with standard speech recognition, in an Europarl Committee dataset with three different languages (Portuguese, Spanish and English). One full iteration of the system has a parallel Real Time Factor (RTF) of 3.08 and a sequential RTF of 6.44.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work we present a set of techniques which explore information from multiple, different language versions of the same speech, to improve Automatic Speech Recognition (ASR) performance. Using this redundant information we are able to recover acronyms, words that cannot be found in the multiple hypotheses produced by the ASR systems, and pronunciations absent from their pronunciation dictionaries. When used together, the three techniques yield a relative improvement of 5.0% over the WER of our baseline system, and 24.8% relative when compared with standard speech recognition, in an Europarl Committee dataset with three different languages (Portuguese, Spanish and English). One full iteration of the system has a parallel Real Time Factor (RTF) of 3.08 and a sequential RTF of 6.44.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从平行多语言语音中恢复首字母缩略词、格子外词和发音
在这项工作中,我们提出了一套技术,从同一语音的多个不同语言版本中探索信息,以提高自动语音识别(ASR)的性能。利用这些冗余信息,我们能够恢复首字母缩略词,在ASR系统产生的多个假设中找不到的单词,以及发音字典中没有的发音。当一起使用时,这三种技术比我们的基线系统的相对效率提高了5.0%,与标准语音识别相比,在具有三种不同语言(葡萄牙语、西班牙语和英语)的欧洲平行委员会数据集中,这三种技术的相对效率提高了24.8%。系统的一次完整迭代的并行实时因子(RTF)为3.08,顺序实时因子为6.44。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1