A hierarchical Bayesian learning framework for autoregressive neural network modeling of time series

F. Acernese, R. Rosa, L. Milano, F. Barone, A. Eleuteri, R. Tagliaferri
{"title":"A hierarchical Bayesian learning framework for autoregressive neural network modeling of time series","authors":"F. Acernese, R. Rosa, L. Milano, F. Barone, A. Eleuteri, R. Tagliaferri","doi":"10.1109/ISPA.2003.1296406","DOIUrl":null,"url":null,"abstract":"In this paper a hierarchical Bayesian learning scheme for autoregressive neural network models is shown, which overcomes the problem of identifying the separate linear and nonlinear parts in the network. We show how the identification can be carried out by defining suitable priors on the parameter space, which help the learning algorithms to avoid undesired parameter configurations. Some applications to synthetic data are shown to validate the proposed methodology.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a hierarchical Bayesian learning scheme for autoregressive neural network models is shown, which overcomes the problem of identifying the separate linear and nonlinear parts in the network. We show how the identification can be carried out by defining suitable priors on the parameter space, which help the learning algorithms to avoid undesired parameter configurations. Some applications to synthetic data are shown to validate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列自回归神经网络建模的层次贝叶斯学习框架
本文提出了一种自回归神经网络模型的层次贝叶斯学习方案,克服了网络中线性部分和非线性部分的分离识别问题。我们展示了如何通过在参数空间上定义合适的先验来进行识别,这有助于学习算法避免不希望的参数配置。通过对合成数据的一些应用,验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning semantics in content based image retrieval Timing-free blind multiuser detection for multicarrier DS/CDMA systems with multiple antennas Adaptive weighted median filter using local entropy for ultrasonic image denoising A new 2D adaptive nonlinear filter based on the Lyapunov stability theory Tissue segmentation of multi-channel brain images with inhomogeneity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1