Data-driven Electric Vehicle Charging Station Placement for Incentivizing Potential Demand

Chenxi Sun, Tongxin Li, Xiaoying Tang
{"title":"Data-driven Electric Vehicle Charging Station Placement for Incentivizing Potential Demand","authors":"Chenxi Sun, Tongxin Li, Xiaoying Tang","doi":"10.1109/SmartGridComm51999.2021.9632309","DOIUrl":null,"url":null,"abstract":"It is believed that Electric Vehicles (EVs) will play an increasingly important role in making the city greener and smarter. However, a critical challenge raised by the transportation electrification process is the proper planning of city-wide EV charging infrastructures, i.e., the siting and sizing of charging stations, especially for the cities that just start promoting the adoption of EVs. In this paper, we investigate the following problem: For a city with a limited budget for public EV charging infrastructure construction, where should the charging stations be deployed to promote the transition of EVs from traditional cars? We propose a δ-nearest model that captures people's satisfaction towards a certain design and formulate the EV charging station placement problem as a monotone submodular maximization problem, equipped with gridded population data and trip data. We then propose a greedy-based algorithm to solve the problem efficiently with a provable approximation ratio. A case study using fine-grained Haikou population data, Point of Interest (POI) data, and trip data is also provided to demonstrate the effectiveness of our approach.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is believed that Electric Vehicles (EVs) will play an increasingly important role in making the city greener and smarter. However, a critical challenge raised by the transportation electrification process is the proper planning of city-wide EV charging infrastructures, i.e., the siting and sizing of charging stations, especially for the cities that just start promoting the adoption of EVs. In this paper, we investigate the following problem: For a city with a limited budget for public EV charging infrastructure construction, where should the charging stations be deployed to promote the transition of EVs from traditional cars? We propose a δ-nearest model that captures people's satisfaction towards a certain design and formulate the EV charging station placement problem as a monotone submodular maximization problem, equipped with gridded population data and trip data. We then propose a greedy-based algorithm to solve the problem efficiently with a provable approximation ratio. A case study using fine-grained Haikou population data, Point of Interest (POI) data, and trip data is also provided to demonstrate the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的电动汽车充电站布局激励潜在需求
人们相信,电动汽车(ev)将在使城市更环保、更智能方面发挥越来越重要的作用。然而,交通电气化进程带来的一个关键挑战是对全市电动汽车充电基础设施的适当规划,即充电站的选址和规模,特别是对于刚刚开始推广电动汽车的城市。本文研究了以下问题:对于一个公共电动汽车充电基础设施建设预算有限的城市,充电站应该部署在哪里,以促进电动汽车从传统汽车向电动汽车的过渡?我们提出了一个δ-最近邻模型来捕捉人们对某一设计的满意度,并将电动汽车充电站安置问题表述为一个单调的次模最大化问题,配备网格化的人口数据和出行数据。然后,我们提出了一种基于贪婪的算法,利用可证明的近似比有效地解决问题。本文还以海口人口数据、兴趣点(POI)数据和出行数据为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1