Limit Load Capacity of Thick-Walled Pipe Loaded by Internal Pressure and Bending

R. Selker, J. Brugmans, Ping Liu, C. Sicilia
{"title":"Limit Load Capacity of Thick-Walled Pipe Loaded by Internal Pressure and Bending","authors":"R. Selker, J. Brugmans, Ping Liu, C. Sicilia","doi":"10.1115/omae2021-62890","DOIUrl":null,"url":null,"abstract":"\n Internally pressurised pipe behaves differently than externally pressurised pipe. DNVGL-ST-F101 [4], a prevailing standard for the design of submarine pipelines, provides limit-state equations for combined loading that are valid only if the diameter-to-wall-thickness ratio (D/t) is between 15 and 45. A recent study has shown that the results are increasingly conservative for lower values of this ratio if the nett pressure is acting on the pipe’s outside [8], especially if it is below 20.\n In this paper, the applicability of the limit-state equations for thick-walled pipe with D/t less than 15 and loaded by a nett internal pressure has been investigated. The first step was a fundamental review of the formulations. Next, the predicted capacities were compared with those estimated using a finite-element (FE) model. The results greatly coincided, which indicates that the conservatism underlying the formulations does not depend on D/t. Hence they can be used for design against local buckling under internal overpressure, too, when the ratio is below 15.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Internally pressurised pipe behaves differently than externally pressurised pipe. DNVGL-ST-F101 [4], a prevailing standard for the design of submarine pipelines, provides limit-state equations for combined loading that are valid only if the diameter-to-wall-thickness ratio (D/t) is between 15 and 45. A recent study has shown that the results are increasingly conservative for lower values of this ratio if the nett pressure is acting on the pipe’s outside [8], especially if it is below 20. In this paper, the applicability of the limit-state equations for thick-walled pipe with D/t less than 15 and loaded by a nett internal pressure has been investigated. The first step was a fundamental review of the formulations. Next, the predicted capacities were compared with those estimated using a finite-element (FE) model. The results greatly coincided, which indicates that the conservatism underlying the formulations does not depend on D/t. Hence they can be used for design against local buckling under internal overpressure, too, when the ratio is below 15.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内压和弯曲加载厚壁管的极限承载能力
内压管道的性能与外压管道不同。海底管道设计的通行标准DNVGL-ST-F101[4]给出了组合加载的极限状态方程,该方程仅在直径/壁厚比(D/t)在15 ~ 45之间有效。最近的一项研究表明,当净压力作用于管道外部时,特别是当净压力低于20时,该比值越小,结果越保守[8]。本文研究了D/t小于15且受净内压载荷的厚壁管道极限状态方程的适用性。第一步是对公式进行基本审查。接下来,将预测容量与使用有限元(FE)模型估计的容量进行比较。结果非常吻合,这表明公式的保守性不依赖于D/t。因此,当比低于15时,它们也可用于防止内部超压下的局部屈曲设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrity Monitoring of Offshore Arctic Pipelines Investigation of Near-Field Temperature Distribution in Buried Dense Phase CO2 Pipelines On the Plastic Bending Responses of Dented Lined Pipe Implementation of a Method for Free-Spanning Pipeline Analysis Simplified Stochastic Modelling of the Force on a Pipe Bend Due to Two-Phase Slug Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1