Piotr Zarychta, Fiona E. Smith, S. King, A. J. Haigh, A. Klinge, Dingchang Zheng, S. Stevens, John F. Allen, A. Okelarin, Philip Langley, Alan Murray
{"title":"Body surface potential mapping for detection of myocardial infarct sites","authors":"Piotr Zarychta, Fiona E. Smith, S. King, A. J. Haigh, A. Klinge, Dingchang Zheng, S. Stevens, John F. Allen, A. Okelarin, Philip Langley, Alan Murray","doi":"10.1109/CIC.2007.4745451","DOIUrl":null,"url":null,"abstract":"Using the additional information from multi-lead body surface potential recordings we aimed to study ECG features to predict the extent of infarcted myocardium as part of the 2007 PhysioNet/Computers in Cardiology Challenge. We studied potential and QT maps through key stages of the ventricular cycle assessing the 2 training and 2 test cases. Clinical assessment of the ECGs was provided by three cardiologists. QRS axis was abnormal in training case 1. ST was elevated in training case 1 and test case 2. T wave axis was abnormal in training case 2 and test case 1. T wave axis was different to QRS axis in training case 1. Cardiologists agreed that training cases 1 and 2 were anterior and inferior infarctions respectively, while they considered both test cases to be normal variations. The maps, however, showed significant abnormalities in the test cases.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Using the additional information from multi-lead body surface potential recordings we aimed to study ECG features to predict the extent of infarcted myocardium as part of the 2007 PhysioNet/Computers in Cardiology Challenge. We studied potential and QT maps through key stages of the ventricular cycle assessing the 2 training and 2 test cases. Clinical assessment of the ECGs was provided by three cardiologists. QRS axis was abnormal in training case 1. ST was elevated in training case 1 and test case 2. T wave axis was abnormal in training case 2 and test case 1. T wave axis was different to QRS axis in training case 1. Cardiologists agreed that training cases 1 and 2 were anterior and inferior infarctions respectively, while they considered both test cases to be normal variations. The maps, however, showed significant abnormalities in the test cases.