Privacy-preservation association rules mining based on fuzzy correlation

Hua-jin Wang, Chenfu Yi
{"title":"Privacy-preservation association rules mining based on fuzzy correlation","authors":"Hua-jin Wang, Chenfu Yi","doi":"10.1109/FSKD.2012.6233857","DOIUrl":null,"url":null,"abstract":"Most existing techniques work on hiding association rules in Boolean data. Based on analyzing fuzzy correlation, we have introduced a new scheme for privacy-preservation in fuzzy association rules mining, named PPM-Scheme, which is able to achieve complete hiding of sensitive rules mined in quantitative data by using improved technique in which we replace the highest value of fuzzy item with zero. Experimental results show that the proposed scheme hides more sensitive rules with minimum number of modifications and maintains quality of the released data than those previous techniques.","PeriodicalId":337941,"journal":{"name":"International Conference on Fuzzy Systems and Knowledge Discovery","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2012.6233857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Most existing techniques work on hiding association rules in Boolean data. Based on analyzing fuzzy correlation, we have introduced a new scheme for privacy-preservation in fuzzy association rules mining, named PPM-Scheme, which is able to achieve complete hiding of sensitive rules mined in quantitative data by using improved technique in which we replace the highest value of fuzzy item with zero. Experimental results show that the proposed scheme hides more sensitive rules with minimum number of modifications and maintains quality of the released data than those previous techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊关联的隐私保护关联规则挖掘
大多数现有技术都是在布尔数据中隐藏关联规则。在分析模糊关联的基础上,提出了一种新的模糊关联规则挖掘中的隐私保护方案PPM-Scheme,该方案通过将模糊项的最大值替换为零的改进技术,实现了对定量数据中挖掘的敏感规则的完全隐藏。实验结果表明,该方法以最少的修改次数隐藏了更多的敏感规则,并保持了发布数据的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor Node Localization based on Convex Optimization in Wireless Sensor Networks Invertible singleton fuzzy models: application to petroleum production control systems An algorithm for extension of clausal beliefs Computer system model in college examination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1