Improved Bi-GRU Model for Imbalanced English Toxic Comments Dataset

Zhongguo Wang, Bao Zhang
{"title":"Improved Bi-GRU Model for Imbalanced English Toxic Comments Dataset","authors":"Zhongguo Wang, Bao Zhang","doi":"10.1145/3508230.3508234","DOIUrl":null,"url":null,"abstract":"Deep learning is widely used in the study of English toxic comment classification. However, most existing studies failed to consider data imbalance. Aiming at an imbalanced English Toxic Comments Dataset, we propose an improved Bi-gated recurrent unit (GRU) model that combines an oversampling and cost-sensitive method. We use random oversampling in the improved model to reduce the data imbalance, introduce a cost-sensitive method, and propose a new loss function for the Bi-GRU model. Experimental results show that the improved Bi-GRU model demonstrates a significantly improved classification performance in the imbalanced English Toxic Comments Dataset.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"142 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning is widely used in the study of English toxic comment classification. However, most existing studies failed to consider data imbalance. Aiming at an imbalanced English Toxic Comments Dataset, we propose an improved Bi-gated recurrent unit (GRU) model that combines an oversampling and cost-sensitive method. We use random oversampling in the improved model to reduce the data imbalance, introduce a cost-sensitive method, and propose a new loss function for the Bi-GRU model. Experimental results show that the improved Bi-GRU model demonstrates a significantly improved classification performance in the imbalanced English Toxic Comments Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不平衡英语有毒评论数据集的改进Bi-GRU模型
深度学习被广泛应用于英语有毒评论分类的研究中。然而,现有的研究大多没有考虑数据的不平衡。针对不平衡的英语有毒评论数据集,我们提出了一种改进的双门循环单元(GRU)模型,该模型结合了过采样和成本敏感方法。我们在改进的模型中使用随机过采样来减少数据不平衡,引入成本敏感方法,并为Bi-GRU模型提出了一个新的损失函数。实验结果表明,改进的Bi-GRU模型在不平衡英语有毒评论数据集上的分类性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pandemic rumor identification on social networking sites: A case study of COVID-19 Research on Domain Emotion Dictionary Construction Method based on Improved SO-PMI Algorithm Topic Segmentation for Interview Dialogue System Method of Graphical User Interface Adaptation Using Reinforcement Learning and Automated Testing Prediction of Number of Likes and Retweets based on the Features of Tweet Text and Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1