{"title":"GPU accelerated gigabit level BCH and LDPC concatenated coding system","authors":"Selcuk Keskin, T. Koçak","doi":"10.1109/HPEC.2017.8091021","DOIUrl":null,"url":null,"abstract":"Increasing data traffic and multimedia services in recent years have paved the way for the development of optical transmission methods to be used in high bandwidth communications systems. In order to meet the very high throughput requirements, dedicated application specific integrated circuit and field programmable gate array solutions for low-density parity-check decoding are proposed in recent years. Conversely, software solutions are less expensive, scalable, and flexible and have shorter development cycle. A natural solution to lower the error floor is to concatenate the LDPC code with an algebraic outer code to clean up the residual errors. In this paper, we present the design and parallel software implementation of a major computation algorithm for LDPC decoding on general purpose graphics processing units as inner code and BCH decoding algorithm as outer code to achieve excellent error-correcting performance. The experimental results show that the proposed GPU-based concatenated decoder achieves the maximum decoding throughput of 1.82Gbps at 10 iterations with low bit-error rate (BER).","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Increasing data traffic and multimedia services in recent years have paved the way for the development of optical transmission methods to be used in high bandwidth communications systems. In order to meet the very high throughput requirements, dedicated application specific integrated circuit and field programmable gate array solutions for low-density parity-check decoding are proposed in recent years. Conversely, software solutions are less expensive, scalable, and flexible and have shorter development cycle. A natural solution to lower the error floor is to concatenate the LDPC code with an algebraic outer code to clean up the residual errors. In this paper, we present the design and parallel software implementation of a major computation algorithm for LDPC decoding on general purpose graphics processing units as inner code and BCH decoding algorithm as outer code to achieve excellent error-correcting performance. The experimental results show that the proposed GPU-based concatenated decoder achieves the maximum decoding throughput of 1.82Gbps at 10 iterations with low bit-error rate (BER).