Design Methodology for Robust Model-Based Fault Diagnosis Schemes and its Application to an Aircraft Hydraulic Power Package

Felix Mardt, P. Bischof, F. Thielecke
{"title":"Design Methodology for Robust Model-Based Fault Diagnosis Schemes and its Application to an Aircraft Hydraulic Power Package","authors":"Felix Mardt, P. Bischof, F. Thielecke","doi":"10.36001/phme.2022.v7i1.3339","DOIUrl":null,"url":null,"abstract":"In a system’s design phase, where knowledge about the actual behavior of the system is shallow, the design of an efficient and robust system diagnostics is a complex task. In order to simplify this process, this paper presents a modelbased methodology for the design of fault diagnosis schemes. The methodology analyzes the structure of available behavioral models of the system and proposes minimal sets of sensors to fulfill diagnostic requirements. In order to choose an optimal set of sensors, the method evaluates the sets in terms of costs and diagnostic robustness. The proposed fault detection, isolation and identification schemes rely on the robust evaluation of model-based residuals using Monte-Carlo methods and highest density regions to account for measurement and parameter uncertainty. To show the design capabilities, the presented method is applied to an aircraft hydraulic power package and the resulting schemes are tested on a real test rig.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a system’s design phase, where knowledge about the actual behavior of the system is shallow, the design of an efficient and robust system diagnostics is a complex task. In order to simplify this process, this paper presents a modelbased methodology for the design of fault diagnosis schemes. The methodology analyzes the structure of available behavioral models of the system and proposes minimal sets of sensors to fulfill diagnostic requirements. In order to choose an optimal set of sensors, the method evaluates the sets in terms of costs and diagnostic robustness. The proposed fault detection, isolation and identification schemes rely on the robust evaluation of model-based residuals using Monte-Carlo methods and highest density regions to account for measurement and parameter uncertainty. To show the design capabilities, the presented method is applied to an aircraft hydraulic power package and the resulting schemes are tested on a real test rig.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒模型的故障诊断方案设计方法及其在飞机液压动力系统中的应用
在系统的设计阶段,对系统的实际行为知之甚少,因此设计一个高效且健壮的系统诊断程序是一项复杂的任务。为了简化这一过程,本文提出了一种基于模型的故障诊断方案设计方法。该方法分析了系统可用行为模型的结构,并提出了满足诊断要求的最小传感器集。为了选择最优的传感器集,该方法从成本和诊断鲁棒性两个方面对传感器集进行评估。所提出的故障检测、隔离和识别方案依赖于使用蒙特卡罗方法和最高密度区域对基于模型的残差进行鲁棒评估,以考虑测量和参数的不确定性。为验证该方法的设计能力,将该方法应用于某型飞机液压动力总成,并在实际试验台上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1